This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345770 #6 Jul 31 2021 22:50:00 %S A345770 1981,2105,2168,2277,2368,2376,2431,2466,2538,2557,2583,2646,2665, %T A345770 2672,2746,2753,2763,2765,2880,2881,2916,2961,2970,2977,2979,2987, %U A345770 3007,3040,3042,3049,3068,3088,3141,3159,3169,3185,3248,3278,3311,3312,3367,3384,3393 %N A345770 Numbers that are the sum of six cubes in exactly eight ways. %C A345770 Differs from A345517 at term 8 because 2438 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 13^3 = 1^3 + 2^3 + 4^3 + 5^3 + 8^3 + 12^3 = 1^3 + 5^3 + 5^3 + 9^3 + 9^3 + 9^3 = 2^3 + 2^3 + 2^3 + 7^3 + 7^3 + 12^3 = 2^3 + 2^3 + 3^3 + 4^3 + 10^3 + 11^3 = 2^3 + 3^3 + 6^3 + 9^3 + 9^3 + 9^3 = 2^3 + 4^3 + 5^3 + 8^3 + 9^3 + 10^3 = 4^3 + 4^3 + 5^3 + 5^3 + 9^3 + 11^3 = 6^3 + 7^3 + 7^3 + 8^3 + 8^3 + 8^3. %H A345770 Sean A. Irvine, <a href="/A345770/b345770.txt">Table of n, a(n) for n = 1..1347</a> %e A345770 2105 is a term because 2105 = 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 11^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 11^3 = 1^3 + 2^3 + 6^3 + 7^3 + 7^3 + 8^3 = 1^3 + 4^3 + 4^3 + 4^3 + 8^3 + 9^3 = 1^3 + 4^3 + 5^3 + 5^3 + 5^3 + 10^3 = 2^3 + 3^3 + 4^3 + 5^3 + 8^3 + 9^3 = 3^3 + 3^3 + 3^3 + 7^3 + 7^3 + 9^3 = 5^3 + 5^3 + 5^3 + 5^3 + 7^3 + 8^3. %o A345770 (Python) %o A345770 from itertools import combinations_with_replacement as cwr %o A345770 from collections import defaultdict %o A345770 keep = defaultdict(lambda: 0) %o A345770 power_terms = [x**3 for x in range(1, 1000)] %o A345770 for pos in cwr(power_terms, 6): %o A345770 tot = sum(pos) %o A345770 keep[tot] += 1 %o A345770 rets = sorted([k for k, v in keep.items() if v == 8]) %o A345770 for x in range(len(rets)): %o A345770 print(rets[x]) %Y A345770 Cf. A345184, A345517, A345769, A345771, A345780, A345820. %K A345770 nonn %O A345770 1,1 %A A345770 _David Consiglio, Jr._, Jun 26 2021