cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345773 Numbers that are the sum of seven cubes in exactly one way.

This page as a plain text file.
%I A345773 #8 Jul 31 2021 22:39:08
%S A345773 7,14,21,28,33,35,40,42,47,49,54,56,59,61,66,68,70,73,75,77,80,84,85,
%T A345773 87,91,92,94,96,98,99,103,105,106,110,111,112,113,117,118,122,124,125,
%U A345773 129,132,133,136,137,138,140,143,144,145,147,148,150,151,152,154
%N A345773 Numbers that are the sum of seven cubes in exactly one way.
%C A345773 Differs from A003330 at term 44 because 131 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
%C A345773 Likely finite.
%H A345773 Sean A. Irvine, <a href="/A345773/b345773.txt">Table of n, a(n) for n = 1..324</a>
%e A345773 14 is a term because 14 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3.
%o A345773 (Python)
%o A345773 from itertools import combinations_with_replacement as cwr
%o A345773 from collections import defaultdict
%o A345773 keep = defaultdict(lambda: 0)
%o A345773 power_terms = [x**3 for x in range(1, 1000)]
%o A345773 for pos in cwr(power_terms, 7):
%o A345773     tot = sum(pos)
%o A345773     keep[tot] += 1
%o A345773     rets = sorted([k for k, v in keep.items() if v == 1])
%o A345773     for x in range(len(rets)):
%o A345773         print(rets[x])
%Y A345773 Cf. A003330, A048929, A345774, A345783, A345823.
%K A345773 nonn
%O A345773 1,1
%A A345773 _David Consiglio, Jr._, Jun 26 2021