This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345773 #8 Jul 31 2021 22:39:08 %S A345773 7,14,21,28,33,35,40,42,47,49,54,56,59,61,66,68,70,73,75,77,80,84,85, %T A345773 87,91,92,94,96,98,99,103,105,106,110,111,112,113,117,118,122,124,125, %U A345773 129,132,133,136,137,138,140,143,144,145,147,148,150,151,152,154 %N A345773 Numbers that are the sum of seven cubes in exactly one way. %C A345773 Differs from A003330 at term 44 because 131 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3. %C A345773 Likely finite. %H A345773 Sean A. Irvine, <a href="/A345773/b345773.txt">Table of n, a(n) for n = 1..324</a> %e A345773 14 is a term because 14 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3. %o A345773 (Python) %o A345773 from itertools import combinations_with_replacement as cwr %o A345773 from collections import defaultdict %o A345773 keep = defaultdict(lambda: 0) %o A345773 power_terms = [x**3 for x in range(1, 1000)] %o A345773 for pos in cwr(power_terms, 7): %o A345773 tot = sum(pos) %o A345773 keep[tot] += 1 %o A345773 rets = sorted([k for k, v in keep.items() if v == 1]) %o A345773 for x in range(len(rets)): %o A345773 print(rets[x]) %Y A345773 Cf. A003330, A048929, A345774, A345783, A345823. %K A345773 nonn %O A345773 1,1 %A A345773 _David Consiglio, Jr._, Jun 26 2021