This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345774 #6 Jul 31 2021 22:39:11 %S A345774 131,159,166,173,185,192,211,236,243,257,264,269,274,276,288,290,292, %T A345774 295,299,300,302,307,309,311,314,320,321,325,332,333,337,339,340,344, %U A345774 348,351,353,355,358,359,360,363,372,384,385,386,388,389,393,395,398,403 %N A345774 Numbers that are the sum of seven cubes in exactly two ways. %C A345774 Differs from A345520 at term 8 because 222 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3. %C A345774 Likely finite. %H A345774 Sean A. Irvine, <a href="/A345774/b345774.txt">Table of n, a(n) for n = 1..355</a> %e A345774 159 is a term because 159 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3. %o A345774 (Python) %o A345774 from itertools import combinations_with_replacement as cwr %o A345774 from collections import defaultdict %o A345774 keep = defaultdict(lambda: 0) %o A345774 power_terms = [x**3 for x in range(1, 1000)] %o A345774 for pos in cwr(power_terms, 7): %o A345774 tot = sum(pos) %o A345774 keep[tot] += 1 %o A345774 rets = sorted([k for k, v in keep.items() if v == 2]) %o A345774 for x in range(len(rets)): %o A345774 print(rets[x]) %Y A345774 Cf. A048930, A345520, A345773, A345775, A345784, A345824. %K A345774 nonn %O A345774 1,1 %A A345774 _David Consiglio, Jr._, Jun 26 2021