cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345774 Numbers that are the sum of seven cubes in exactly two ways.

This page as a plain text file.
%I A345774 #6 Jul 31 2021 22:39:11
%S A345774 131,159,166,173,185,192,211,236,243,257,264,269,274,276,288,290,292,
%T A345774 295,299,300,302,307,309,311,314,320,321,325,332,333,337,339,340,344,
%U A345774 348,351,353,355,358,359,360,363,372,384,385,386,388,389,393,395,398,403
%N A345774 Numbers that are the sum of seven cubes in exactly two ways.
%C A345774 Differs from A345520 at term 8 because 222 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3  = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3  = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3.
%C A345774 Likely finite.
%H A345774 Sean A. Irvine, <a href="/A345774/b345774.txt">Table of n, a(n) for n = 1..355</a>
%e A345774 159 is a term because 159 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3.
%o A345774 (Python)
%o A345774 from itertools import combinations_with_replacement as cwr
%o A345774 from collections import defaultdict
%o A345774 keep = defaultdict(lambda: 0)
%o A345774 power_terms = [x**3 for x in range(1, 1000)]
%o A345774 for pos in cwr(power_terms, 7):
%o A345774     tot = sum(pos)
%o A345774     keep[tot] += 1
%o A345774     rets = sorted([k for k, v in keep.items() if v == 2])
%o A345774     for x in range(len(rets)):
%o A345774         print(rets[x])
%Y A345774 Cf. A048930, A345520, A345773, A345775, A345784, A345824.
%K A345774 nonn
%O A345774 1,1
%A A345774 _David Consiglio, Jr._, Jun 26 2021