cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345775 Numbers that are the sum of seven cubes in exactly three ways.

This page as a plain text file.
%I A345775 #6 Jul 31 2021 22:39:15
%S A345775 222,229,248,255,262,281,283,285,318,346,370,374,377,379,381,396,400,
%T A345775 407,412,419,426,433,437,438,444,451,463,472,475,477,489,494,501,505,
%U A345775 507,510,522,529,533,536,559,564,566,568,570,577,578,584,585,592,594,596
%N A345775 Numbers that are the sum of seven cubes in exactly three ways.
%C A345775 Differs from A345521 at term 28 because 470 = 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 6^3  = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 6^3  = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3  = 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3.
%C A345775 Likely finite.
%H A345775 Sean A. Irvine, <a href="/A345775/b345775.txt">Table of n, a(n) for n = 1..390</a>
%e A345775 229 is a term because 229 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
%o A345775 (Python)
%o A345775 from itertools import combinations_with_replacement as cwr
%o A345775 from collections import defaultdict
%o A345775 keep = defaultdict(lambda: 0)
%o A345775 power_terms = [x**3 for x in range(1, 1000)]
%o A345775 for pos in cwr(power_terms, 7):
%o A345775     tot = sum(pos)
%o A345775     keep[tot] += 1
%o A345775     rets = sorted([k for k, v in keep.items() if v == 3])
%o A345775     for x in range(len(rets)):
%o A345775         print(rets[x])
%Y A345775 Cf. A048931, A345521, A345774, A345776, A345785, A345825.
%K A345775 nonn
%O A345775 1,1
%A A345775 _David Consiglio, Jr._, Jun 26 2021