This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345775 #6 Jul 31 2021 22:39:15 %S A345775 222,229,248,255,262,281,283,285,318,346,370,374,377,379,381,396,400, %T A345775 407,412,419,426,433,437,438,444,451,463,472,475,477,489,494,501,505, %U A345775 507,510,522,529,533,536,559,564,566,568,570,577,578,584,585,592,594,596 %N A345775 Numbers that are the sum of seven cubes in exactly three ways. %C A345775 Differs from A345521 at term 28 because 470 = 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 = 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3. %C A345775 Likely finite. %H A345775 Sean A. Irvine, <a href="/A345775/b345775.txt">Table of n, a(n) for n = 1..390</a> %e A345775 229 is a term because 229 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3. %o A345775 (Python) %o A345775 from itertools import combinations_with_replacement as cwr %o A345775 from collections import defaultdict %o A345775 keep = defaultdict(lambda: 0) %o A345775 power_terms = [x**3 for x in range(1, 1000)] %o A345775 for pos in cwr(power_terms, 7): %o A345775 tot = sum(pos) %o A345775 keep[tot] += 1 %o A345775 rets = sorted([k for k, v in keep.items() if v == 3]) %o A345775 for x in range(len(rets)): %o A345775 print(rets[x]) %Y A345775 Cf. A048931, A345521, A345774, A345776, A345785, A345825. %K A345775 nonn %O A345775 1,1 %A A345775 _David Consiglio, Jr._, Jun 26 2021