cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345776 Numbers that are the sum of seven cubes in exactly four ways.

This page as a plain text file.
%I A345776 #6 Jul 31 2021 22:39:17
%S A345776 470,496,503,603,634,653,659,685,690,692,711,712,747,751,754,761,766,
%T A345776 773,775,777,780,783,787,792,794,812,813,829,831,836,842,843,859,867,
%U A345776 871,875,883,885,890,892,899,901,904,906,907,911,913,918,919,927,930,936
%N A345776 Numbers that are the sum of seven cubes in exactly four ways.
%C A345776 Differs from A345522 at term 5 because 627 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 6^3 + 7^3  = 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3  = 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3  = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3  = 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 6^3 + 6^3.
%C A345776 Likely finite.
%H A345776 Sean A. Irvine, <a href="/A345776/b345776.txt">Table of n, a(n) for n = 1..360</a>
%e A345776 496 is a term because 496 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3.
%o A345776 (Python)
%o A345776 from itertools import combinations_with_replacement as cwr
%o A345776 from collections import defaultdict
%o A345776 keep = defaultdict(lambda: 0)
%o A345776 power_terms = [x**3 for x in range(1, 1000)]
%o A345776 for pos in cwr(power_terms, 7):
%o A345776     tot = sum(pos)
%o A345776     keep[tot] += 1
%o A345776     rets = sorted([k for k, v in keep.items() if v == 4])
%o A345776     for x in range(len(rets)):
%o A345776         print(rets[x])
%Y A345776 Cf. A345522, A345766, A345775, A345777, A345786, A345826.
%K A345776 nonn
%O A345776 1,1
%A A345776 _David Consiglio, Jr._, Jun 26 2021