This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345776 #6 Jul 31 2021 22:39:17 %S A345776 470,496,503,603,634,653,659,685,690,692,711,712,747,751,754,761,766, %T A345776 773,775,777,780,783,787,792,794,812,813,829,831,836,842,843,859,867, %U A345776 871,875,883,885,890,892,899,901,904,906,907,911,913,918,919,927,930,936 %N A345776 Numbers that are the sum of seven cubes in exactly four ways. %C A345776 Differs from A345522 at term 5 because 627 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 6^3 + 7^3 = 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 = 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 6^3 + 6^3. %C A345776 Likely finite. %H A345776 Sean A. Irvine, <a href="/A345776/b345776.txt">Table of n, a(n) for n = 1..360</a> %e A345776 496 is a term because 496 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3. %o A345776 (Python) %o A345776 from itertools import combinations_with_replacement as cwr %o A345776 from collections import defaultdict %o A345776 keep = defaultdict(lambda: 0) %o A345776 power_terms = [x**3 for x in range(1, 1000)] %o A345776 for pos in cwr(power_terms, 7): %o A345776 tot = sum(pos) %o A345776 keep[tot] += 1 %o A345776 rets = sorted([k for k, v in keep.items() if v == 4]) %o A345776 for x in range(len(rets)): %o A345776 print(rets[x]) %Y A345776 Cf. A345522, A345766, A345775, A345777, A345786, A345826. %K A345776 nonn %O A345776 1,1 %A A345776 _David Consiglio, Jr._, Jun 26 2021