This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345777 #6 Jul 31 2021 22:39:21 %S A345777 627,768,838,845,857,864,874,881,894,900,920,937,950,962,976,981,983, %T A345777 990,1002,1009,1011,1016,1027,1054,1060,1061,1063,1089,1096,1098,1102, %U A345777 1105,1109,1115,1124,1128,1133,1135,1137,1140,1144,1151,1153,1154,1159,1163 %N A345777 Numbers that are the sum of seven cubes in exactly five ways. %C A345777 Differs from A345523 at term 14 because 955 = 1^3 + 1^3 + 1^3 + 2^3 + 6^3 + 6^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 9^3 = 1^3 + 3^3 + 3^3 + 5^3 + 6^3 + 6^3 + 7^3 = 1^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 4^3 + 4^3 + 5^3 + 7^3 + 7^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 8^3. %C A345777 Likely finite. %H A345777 Sean A. Irvine, <a href="/A345777/b345777.txt">Table of n, a(n) for n = 1..351</a> %e A345777 768 is a term because 768 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3. %o A345777 (Python) %o A345777 from itertools import combinations_with_replacement as cwr %o A345777 from collections import defaultdict %o A345777 keep = defaultdict(lambda: 0) %o A345777 power_terms = [x**3 for x in range(1, 1000)] %o A345777 for pos in cwr(power_terms, 7): %o A345777 tot = sum(pos) %o A345777 keep[tot] += 1 %o A345777 rets = sorted([k for k, v in keep.items() if v == 5]) %o A345777 for x in range(len(rets)): %o A345777 print(rets[x]) %Y A345777 Cf. A345523, A345767, A345776, A345778, A345787, A345827. %K A345777 nonn %O A345777 1,1 %A A345777 _David Consiglio, Jr._, Jun 26 2021