cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345777 Numbers that are the sum of seven cubes in exactly five ways.

This page as a plain text file.
%I A345777 #6 Jul 31 2021 22:39:21
%S A345777 627,768,838,845,857,864,874,881,894,900,920,937,950,962,976,981,983,
%T A345777 990,1002,1009,1011,1016,1027,1054,1060,1061,1063,1089,1096,1098,1102,
%U A345777 1105,1109,1115,1124,1128,1133,1135,1137,1140,1144,1151,1153,1154,1159,1163
%N A345777 Numbers that are the sum of seven cubes in exactly five ways.
%C A345777 Differs from A345523 at term 14 because 955 = 1^3 + 1^3 + 1^3 + 2^3 + 6^3 + 6^3 + 8^3  = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 9^3  = 1^3 + 3^3 + 3^3 + 5^3 + 6^3 + 6^3 + 7^3  = 1^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 8^3  = 2^3 + 2^3 + 4^3 + 4^3 + 5^3 + 7^3 + 7^3  = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 8^3.
%C A345777 Likely finite.
%H A345777 Sean A. Irvine, <a href="/A345777/b345777.txt">Table of n, a(n) for n = 1..351</a>
%e A345777 768 is a term because 768 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3.
%o A345777 (Python)
%o A345777 from itertools import combinations_with_replacement as cwr
%o A345777 from collections import defaultdict
%o A345777 keep = defaultdict(lambda: 0)
%o A345777 power_terms = [x**3 for x in range(1, 1000)]
%o A345777 for pos in cwr(power_terms, 7):
%o A345777     tot = sum(pos)
%o A345777     keep[tot] += 1
%o A345777     rets = sorted([k for k, v in keep.items() if v == 5])
%o A345777     for x in range(len(rets)):
%o A345777         print(rets[x])
%Y A345777 Cf. A345523, A345767, A345776, A345778, A345787, A345827.
%K A345777 nonn
%O A345777 1,1
%A A345777 _David Consiglio, Jr._, Jun 26 2021