cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345780 Numbers that are the sum of seven cubes in exactly eight ways.

This page as a plain text file.
%I A345780 #6 Jul 31 2021 22:39:30
%S A345780 1385,1515,1552,1557,1585,1587,1603,1613,1622,1655,1665,1674,1681,
%T A345780 1718,1719,1739,1741,1746,1753,1755,1765,1767,1782,1793,1805,1809,
%U A345780 1811,1818,1819,1826,1828,1830,1833,1838,1856,1870,1873,1881,1901,1905,1931,1935,1937
%N A345780 Numbers that are the sum of seven cubes in exactly eight ways.
%C A345780 Differs from A345526 at term 2 because 1496 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 9^3 + 9^3  = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 11^3  = 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 8^3 + 9^3  = 1^3 + 2^3 + 2^3 + 4^3 + 7^3 + 7^3 + 9^3  = 1^3 + 5^3 + 5^3 + 6^3 + 7^3 + 7^3 + 7^3  = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 11^3  = 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3 + 10^3  = 2^3 + 3^3 + 6^3 + 6^3 + 7^3 + 7^3 + 7^3  = 4^3 + 4^3 + 4^3 + 4^3 + 6^3 + 8^3 + 8^3.
%C A345780 Likely finite.
%H A345780 Sean A. Irvine, <a href="/A345780/b345780.txt">Table of n, a(n) for n = 1..343</a>
%e A345780 1496 is a term because 1496 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 10^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 8^3 = 1^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 10^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 9^3 = 2^3 + 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3.
%o A345780 (Python)
%o A345780 from itertools import combinations_with_replacement as cwr
%o A345780 from collections import defaultdict
%o A345780 keep = defaultdict(lambda: 0)
%o A345780 power_terms = [x**3 for x in range(1, 1000)]
%o A345780 for pos in cwr(power_terms, 7):
%o A345780     tot = sum(pos)
%o A345780     keep[tot] += 1
%o A345780     rets = sorted([k for k, v in keep.items() if v == 8])
%o A345780     for x in range(len(rets)):
%o A345780         print(rets[x])
%Y A345780 Cf. A345526, A345770, A345779, A345781, A345790, A345830.
%K A345780 nonn
%O A345780 1,1
%A A345780 _David Consiglio, Jr._, Jun 26 2021