cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345781 Numbers that are the sum of seven cubes in exactly nine ways.

This page as a plain text file.
%I A345781 #6 Jul 31 2021 22:39:34
%S A345781 1496,1648,1720,1737,1772,1781,1802,1835,1844,1882,1891,1898,1900,
%T A345781 1907,1912,1919,1945,1952,1954,1961,1996,2000,2012,2026,2071,2080,
%U A345781 2098,2107,2110,2115,2116,2132,2134,2136,2139,2150,2152,2168,2178,2185,2187,2195,2205
%N A345781 Numbers that are the sum of seven cubes in exactly nine ways.
%C A345781 Differs from A345527 at term 3 because 1704 = 1^3 + 1^3 + 1^3 + 3^3 + 6^3 + 9^3 + 9^3  = 1^3 + 1^3 + 1^3 + 4^3 + 5^3 + 8^3 + 10^3  = 1^3 + 1^3 + 2^3 + 2^3 + 7^3 + 7^3 + 10^3  = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 6^3 + 11^3  = 1^3 + 2^3 + 4^3 + 6^3 + 7^3 + 7^3 + 9^3  = 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 6^3 + 11^3  = 2^3 + 2^3 + 3^3 + 5^3 + 8^3 + 8^3 + 8^3  = 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 7^3 + 10^3  = 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 9^3 + 9^3  = 3^3 + 6^3 + 6^3 + 6^3 + 7^3 + 7^3 + 7^3.
%C A345781 Likely finite.
%H A345781 Sean A. Irvine, <a href="/A345781/b345781.txt">Table of n, a(n) for n = 1..338</a>
%e A345781 1648 is a term because 1648 = 1^3 + 1^3 + 1^3 + 2^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 1^3 + 2^3 + 2^3 + 5^3 + 6^3 + 6^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 8^3 + 8^3 = 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 7^3 + 7^3.
%o A345781 (Python)
%o A345781 from itertools import combinations_with_replacement as cwr
%o A345781 from collections import defaultdict
%o A345781 keep = defaultdict(lambda: 0)
%o A345781 power_terms = [x**3 for x in range(1, 1000)]
%o A345781 for pos in cwr(power_terms, 7):
%o A345781     tot = sum(pos)
%o A345781     keep[tot] += 1
%o A345781     rets = sorted([k for k, v in keep.items() if v == 9])
%o A345781     for x in range(len(rets)):
%o A345781         print(rets[x])
%Y A345781 Cf. A345527, A345771, A345780, A345782, A345791, A345831.
%K A345781 nonn
%O A345781 1,1
%A A345781 _David Consiglio, Jr._, Jun 26 2021