cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345782 Numbers that are the sum of seven cubes in exactly ten ways.

This page as a plain text file.
%I A345782 #6 Jul 31 2021 22:39:38
%S A345782 1704,1711,1800,1837,1863,1926,1938,1963,2008,2019,2045,2053,2059,
%T A345782 2078,2113,2143,2161,2171,2176,2217,2223,2250,2260,2266,2276,2286,
%U A345782 2295,2304,2313,2315,2331,2350,2354,2357,2374,2404,2412,2413,2442,2444,2446,2447,2511
%N A345782 Numbers that are the sum of seven cubes in exactly ten ways.
%C A345782 Differs from A345506 at term 3 because 1774 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 12^3  = 1^3 + 1^3 + 1^3 + 2^3 + 6^3 + 6^3 + 11^3  = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 9^3 + 10^3  = 1^3 + 1^3 + 4^3 + 5^3 + 5^3 + 9^3 + 9^3  = 1^3 + 2^3 + 3^3 + 4^3 + 6^3 + 9^3 + 9^3  = 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 8^3 + 10^3  = 1^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 11^3  = 2^3 + 2^3 + 2^3 + 4^3 + 7^3 + 7^3 + 10^3  = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 11^3  = 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 7^3 + 9^3  = 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3 + 9^3.
%C A345782 Likely finite.
%H A345782 Sean A. Irvine, <a href="/A345782/b345782.txt">Table of n, a(n) for n = 1..328</a>
%e A345782 1711 is a term because 1711 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 7^3 + 9^3 = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 10^3 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 9^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3 = 1^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3 + 8^3 = 2^3 + 2^3 + 3^3 + 5^3 + 6^3 + 6^3 + 8^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 9^3 = 4^3 + 4^3 + 5^3 + 5^3 + 6^3 + 6^3 + 6^3.
%o A345782 (Python)
%o A345782 from itertools import combinations_with_replacement as cwr
%o A345782 from collections import defaultdict
%o A345782 keep = defaultdict(lambda: 0)
%o A345782 power_terms = [x**3 for x in range(1, 1000)]
%o A345782 for pos in cwr(power_terms, 7):
%o A345782     tot = sum(pos)
%o A345782     keep[tot] += 1
%o A345782     rets = sorted([k for k, v in keep.items() if v == 10])
%o A345782     for x in range(len(rets)):
%o A345782         print(rets[x])
%Y A345782 Cf. A345506, A345772, A345781, A345792, A345832.
%K A345782 nonn
%O A345782 1,1
%A A345782 _David Consiglio, Jr._, Jun 26 2021