cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345783 Numbers that are the sum of eight cubes in exactly one way.

This page as a plain text file.
%I A345783 #7 Jul 31 2021 22:37:04
%S A345783 8,15,22,29,34,36,41,43,48,50,55,57,60,62,64,67,69,71,74,76,78,81,83,
%T A345783 85,86,88,92,93,95,97,99,100,102,104,106,107,111,112,113,114,118,119,
%U A345783 120,121,123,125,126,130,133,134,137,138,140,141,144,145,146,148
%N A345783 Numbers that are the sum of eight cubes in exactly one way.
%C A345783 Differs from A003331 at term 49 because 132 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
%C A345783 Likely finite.
%H A345783 Sean A. Irvine, <a href="/A345783/b345783.txt">Table of n, a(n) for n = 1..209</a>
%e A345783 15 is a term because 15 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3.
%o A345783 (Python)
%o A345783 from itertools import combinations_with_replacement as cwr
%o A345783 from collections import defaultdict
%o A345783 keep = defaultdict(lambda: 0)
%o A345783 power_terms = [x**3 for x in range(1, 1000)]
%o A345783 for pos in cwr(power_terms, 8):
%o A345783     tot = sum(pos)
%o A345783     keep[tot] += 1
%o A345783     rets = sorted([k for k, v in keep.items() if v == 1])
%o A345783     for x in range(len(rets)):
%o A345783         print(rets[x])
%Y A345783 Cf. A003331, A345773, A345784, A345793, A345833.
%K A345783 nonn
%O A345783 1,1
%A A345783 _David Consiglio, Jr._, Jun 26 2021