This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345783 #7 Jul 31 2021 22:37:04 %S A345783 8,15,22,29,34,36,41,43,48,50,55,57,60,62,64,67,69,71,74,76,78,81,83, %T A345783 85,86,88,92,93,95,97,99,100,102,104,106,107,111,112,113,114,118,119, %U A345783 120,121,123,125,126,130,133,134,137,138,140,141,144,145,146,148 %N A345783 Numbers that are the sum of eight cubes in exactly one way. %C A345783 Differs from A003331 at term 49 because 132 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3. %C A345783 Likely finite. %H A345783 Sean A. Irvine, <a href="/A345783/b345783.txt">Table of n, a(n) for n = 1..209</a> %e A345783 15 is a term because 15 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3. %o A345783 (Python) %o A345783 from itertools import combinations_with_replacement as cwr %o A345783 from collections import defaultdict %o A345783 keep = defaultdict(lambda: 0) %o A345783 power_terms = [x**3 for x in range(1, 1000)] %o A345783 for pos in cwr(power_terms, 8): %o A345783 tot = sum(pos) %o A345783 keep[tot] += 1 %o A345783 rets = sorted([k for k, v in keep.items() if v == 1]) %o A345783 for x in range(len(rets)): %o A345783 print(rets[x]) %Y A345783 Cf. A003331, A345773, A345784, A345793, A345833. %K A345783 nonn %O A345783 1,1 %A A345783 _David Consiglio, Jr._, Jun 26 2021