This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345784 #6 Jul 31 2021 22:37:08 %S A345784 132,139,158,160,167,174,181,186,193,195,197,200,212,216,219,238,244, %T A345784 251,258,265,272,277,288,296,298,300,301,303,307,314,315,317,321,322, %U A345784 327,328,329,333,334,336,338,340,341,348,350,352,356,359,360,361,363,366 %N A345784 Numbers that are the sum of eight cubes in exactly two ways. %C A345784 Differs from A345532 at term 16 because 223 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3. %C A345784 Likely finite. %H A345784 Sean A. Irvine, <a href="/A345784/b345784.txt">Table of n, a(n) for n = 1..173</a> %e A345784 139 is a term because 139 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3. %o A345784 (Python) %o A345784 from itertools import combinations_with_replacement as cwr %o A345784 from collections import defaultdict %o A345784 keep = defaultdict(lambda: 0) %o A345784 power_terms = [x**3 for x in range(1, 1000)] %o A345784 for pos in cwr(power_terms, 8): %o A345784 tot = sum(pos) %o A345784 keep[tot] += 1 %o A345784 rets = sorted([k for k, v in keep.items() if v == 2]) %o A345784 for x in range(len(rets)): %o A345784 print(rets[x]) %Y A345784 Cf. A345532, A345774, A345783, A345785, A345794, A345834. %K A345784 nonn %O A345784 1,1 %A A345784 _David Consiglio, Jr._, Jun 26 2021