cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345784 Numbers that are the sum of eight cubes in exactly two ways.

This page as a plain text file.
%I A345784 #6 Jul 31 2021 22:37:08
%S A345784 132,139,158,160,167,174,181,186,193,195,197,200,212,216,219,238,244,
%T A345784 251,258,265,272,277,288,296,298,300,301,303,307,314,315,317,321,322,
%U A345784 327,328,329,333,334,336,338,340,341,348,350,352,356,359,360,361,363,366
%N A345784 Numbers that are the sum of eight cubes in exactly two ways.
%C A345784 Differs from A345532 at term 16 because 223 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3  = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3  = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3.
%C A345784 Likely finite.
%H A345784 Sean A. Irvine, <a href="/A345784/b345784.txt">Table of n, a(n) for n = 1..173</a>
%e A345784 139 is a term because 139 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3.
%o A345784 (Python)
%o A345784 from itertools import combinations_with_replacement as cwr
%o A345784 from collections import defaultdict
%o A345784 keep = defaultdict(lambda: 0)
%o A345784 power_terms = [x**3 for x in range(1, 1000)]
%o A345784 for pos in cwr(power_terms, 8):
%o A345784     tot = sum(pos)
%o A345784     keep[tot] += 1
%o A345784     rets = sorted([k for k, v in keep.items() if v == 2])
%o A345784     for x in range(len(rets)):
%o A345784         print(rets[x])
%Y A345784 Cf. A345532, A345774, A345783, A345785, A345794, A345834.
%K A345784 nonn
%O A345784 1,1
%A A345784 _David Consiglio, Jr._, Jun 26 2021