cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345785 Numbers that are the sum of eight cubes in exactly three ways.

This page as a plain text file.
%I A345785 #6 Jul 31 2021 22:37:11
%S A345785 223,230,237,249,263,270,275,282,284,286,289,291,293,308,310,312,319,
%T A345785 326,345,349,354,364,371,373,375,378,380,385,386,387,389,397,399,404,
%U A345785 406,410,412,413,415,420,423,439,441,443,446,449,452,453,459,460,465,473
%N A345785 Numbers that are the sum of eight cubes in exactly three ways.
%C A345785 Differs from A345533 at term 5 because 256 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3  = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3  = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3  = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3.
%C A345785 Likely finite.
%H A345785 Sean A. Irvine, <a href="/A345785/b345785.txt">Table of n, a(n) for n = 1..198</a>
%e A345785 230 is a term because 230 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
%o A345785 (Python)
%o A345785 from itertools import combinations_with_replacement as cwr
%o A345785 from collections import defaultdict
%o A345785 keep = defaultdict(lambda: 0)
%o A345785 power_terms = [x**3 for x in range(1, 1000)]
%o A345785 for pos in cwr(power_terms, 8):
%o A345785     tot = sum(pos)
%o A345785     keep[tot] += 1
%o A345785     rets = sorted([k for k, v in keep.items() if v == 3])
%o A345785     for x in range(len(rets)):
%o A345785         print(rets[x])
%Y A345785 Cf. A345533, A345775, A345784, A345786, A345795, A345835.
%K A345785 nonn
%O A345785 1,1
%A A345785 _David Consiglio, Jr._, Jun 26 2021