This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345785 #6 Jul 31 2021 22:37:11 %S A345785 223,230,237,249,263,270,275,282,284,286,289,291,293,308,310,312,319, %T A345785 326,345,349,354,364,371,373,375,378,380,385,386,387,389,397,399,404, %U A345785 406,410,412,413,415,420,423,439,441,443,446,449,452,453,459,460,465,473 %N A345785 Numbers that are the sum of eight cubes in exactly three ways. %C A345785 Differs from A345533 at term 5 because 256 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3. %C A345785 Likely finite. %H A345785 Sean A. Irvine, <a href="/A345785/b345785.txt">Table of n, a(n) for n = 1..198</a> %e A345785 230 is a term because 230 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3. %o A345785 (Python) %o A345785 from itertools import combinations_with_replacement as cwr %o A345785 from collections import defaultdict %o A345785 keep = defaultdict(lambda: 0) %o A345785 power_terms = [x**3 for x in range(1, 1000)] %o A345785 for pos in cwr(power_terms, 8): %o A345785 tot = sum(pos) %o A345785 keep[tot] += 1 %o A345785 rets = sorted([k for k, v in keep.items() if v == 3]) %o A345785 for x in range(len(rets)): %o A345785 print(rets[x]) %Y A345785 Cf. A345533, A345775, A345784, A345786, A345795, A345835. %K A345785 nonn %O A345785 1,1 %A A345785 _David Consiglio, Jr._, Jun 26 2021