This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345786 #6 Jul 31 2021 22:37:14 %S A345786 256,347,382,401,408,427,434,438,445,464,478,480,490,499,502,506,511, %T A345786 516,523,530,532,534,537,560,565,567,569,571,578,586,593,595,600,602, %U A345786 604,605,611,612,616,619,621,624,626,643,645,656,660,663,664,668,675,679 %N A345786 Numbers that are the sum of eight cubes in exactly four ways. %C A345786 Differs from A345534 at term 11 because 471 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3. %C A345786 Likely finite. %H A345786 Sean A. Irvine, <a href="/A345786/b345786.txt">Table of n, a(n) for n = 1..207</a> %e A345786 347 is a term because 347 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3. %o A345786 (Python) %o A345786 from itertools import combinations_with_replacement as cwr %o A345786 from collections import defaultdict %o A345786 keep = defaultdict(lambda: 0) %o A345786 power_terms = [x**3 for x in range(1, 1000)] %o A345786 for pos in cwr(power_terms, 8): %o A345786 tot = sum(pos) %o A345786 keep[tot] += 1 %o A345786 rets = sorted([k for k, v in keep.items() if v == 4]) %o A345786 for x in range(len(rets)): %o A345786 print(rets[x]) %Y A345786 Cf. A345534, A345776, A345785, A345787, A345796, A345836. %K A345786 nonn %O A345786 1,1 %A A345786 _David Consiglio, Jr._, Jun 26 2021