cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345786 Numbers that are the sum of eight cubes in exactly four ways.

This page as a plain text file.
%I A345786 #6 Jul 31 2021 22:37:14
%S A345786 256,347,382,401,408,427,434,438,445,464,478,480,490,499,502,506,511,
%T A345786 516,523,530,532,534,537,560,565,567,569,571,578,586,593,595,600,602,
%U A345786 604,605,611,612,616,619,621,624,626,643,645,656,660,663,664,668,675,679
%N A345786 Numbers that are the sum of eight cubes in exactly four ways.
%C A345786 Differs from A345534 at term 11 because 471 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 6^3  = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 6^3  = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3  = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3  = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3.
%C A345786 Likely finite.
%H A345786 Sean A. Irvine, <a href="/A345786/b345786.txt">Table of n, a(n) for n = 1..207</a>
%e A345786 347 is a term because 347 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3.
%o A345786 (Python)
%o A345786 from itertools import combinations_with_replacement as cwr
%o A345786 from collections import defaultdict
%o A345786 keep = defaultdict(lambda: 0)
%o A345786 power_terms = [x**3 for x in range(1, 1000)]
%o A345786 for pos in cwr(power_terms, 8):
%o A345786     tot = sum(pos)
%o A345786     keep[tot] += 1
%o A345786     rets = sorted([k for k, v in keep.items() if v == 4])
%o A345786     for x in range(len(rets)):
%o A345786         print(rets[x])
%Y A345786 Cf. A345534, A345776, A345785, A345787, A345796, A345836.
%K A345786 nonn
%O A345786 1,1
%A A345786 _David Consiglio, Jr._, Jun 26 2021