This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345787 #6 Jul 31 2021 22:37:17 %S A345787 471,497,504,597,623,630,635,642,649,654,661,667,680,686,691,693,712, %T A345787 717,723,728,736,738,741,743,752,754,755,762,774,780,781,783,784,785, %U A345787 788,791,793,797,800,802,804,810,813,814,815,817,819,820,821,830,834,837 %N A345787 Numbers that are the sum of eight cubes in exactly five ways. %C A345787 Differs from A345535 at term 6 because 628 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 6^3 + 7^3 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 5^3 + 7^3. %C A345787 Likely finite. %H A345787 Sean A. Irvine, <a href="/A345787/b345787.txt">Table of n, a(n) for n = 1..180</a> %e A345787 497 is a term because 497 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3. %o A345787 (Python) %o A345787 from itertools import combinations_with_replacement as cwr %o A345787 from collections import defaultdict %o A345787 keep = defaultdict(lambda: 0) %o A345787 power_terms = [x**3 for x in range(1, 1000)] %o A345787 for pos in cwr(power_terms, 8): %o A345787 tot = sum(pos) %o A345787 keep[tot] += 1 %o A345787 rets = sorted([k for k, v in keep.items() if v == 5]) %o A345787 for x in range(len(rets)): %o A345787 print(rets[x]) %Y A345787 Cf. A345535, A345777, A345786, A345788, A345797, A345837. %K A345787 nonn %O A345787 1,1 %A A345787 _David Consiglio, Jr._, Jun 26 2021