cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345789 Numbers that are the sum of eight cubes in exactly seven ways.

This page as a plain text file.
%I A345789 #6 Jul 31 2021 22:37:24
%S A345789 902,908,921,938,958,963,982,991,996,1003,1008,1010,1017,1019,1028,
%T A345789 1029,1033,1047,1055,1058,1061,1062,1070,1087,1091,1094,1096,1097,
%U A345789 1104,1108,1111,1113,1115,1116,1118,1120,1122,1123,1127,1134,1141,1143,1145,1152,1153
%N A345789 Numbers that are the sum of eight cubes in exactly seven ways.
%C A345789 Differs from A345537 at term 7 because 970 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 6^3 + 7^3 + 7^3  = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 8^3  = 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 7^3  = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 9^3  = 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 + 7^3  = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 + 7^3  = 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 6^3 + 6^3 + 7^3  = 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 8^3.
%C A345789 Likely finite.
%H A345789 Sean A. Irvine, <a href="/A345789/b345789.txt">Table of n, a(n) for n = 1..174</a>
%e A345789 908 is a term because 908 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 5^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 = 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3.
%o A345789 (Python)
%o A345789 from itertools import combinations_with_replacement as cwr
%o A345789 from collections import defaultdict
%o A345789 keep = defaultdict(lambda: 0)
%o A345789 power_terms = [x**3 for x in range(1, 1000)]
%o A345789 for pos in cwr(power_terms, 8):
%o A345789     tot = sum(pos)
%o A345789     keep[tot] += 1
%o A345789     rets = sorted([k for k, v in keep.items() if v == 7])
%o A345789     for x in range(len(rets)):
%o A345789         print(rets[x])
%Y A345789 Cf. A345537, A345779, A345788, A345790, A345799, A345839.
%K A345789 nonn
%O A345789 1,1
%A A345789 _David Consiglio, Jr._, Jun 26 2021