cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345791 Numbers that are the sum of eight cubes in exactly nine ways.

This page as a plain text file.
%I A345791 #6 Jul 31 2021 22:37:30
%S A345791 984,1080,1136,1171,1192,1197,1204,1223,1269,1273,1280,1306,1318,1325,
%T A345791 1332,1333,1337,1344,1356,1360,1369,1370,1374,1377,1379,1404,1406,
%U A345791 1415,1416,1422,1425,1430,1432,1438,1442,1444,1445,1456,1476,1481,1486,1488,1494
%N A345791 Numbers that are the sum of eight cubes in exactly nine ways.
%C A345791 Differs from A345539 at term 5 because 1185 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 10^3  = 1^3 + 1^3 + 1^3 + 4^3 + 6^3 + 6^3 + 7^3 + 7^3  = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 10^3  = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 6^3 + 8^3  = 1^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3 + 9^3  = 1^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3 + 7^3  = 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 9^3  = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 8^3 + 8^3  = 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 + 6^3 + 7^3  = 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 + 7^3 + 7^3.
%C A345791 Likely finite.
%H A345791 Sean A. Irvine, <a href="/A345791/b345791.txt">Table of n, a(n) for n = 1..146</a>
%e A345791 1080 is a term because 1080 = 1^3 + 1^3 + 1^3 + 2^3 + 4^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 9^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 8^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3.
%o A345791 (Python)
%o A345791 from itertools import combinations_with_replacement as cwr
%o A345791 from collections import defaultdict
%o A345791 keep = defaultdict(lambda: 0)
%o A345791 power_terms = [x**3 for x in range(1, 1000)]
%o A345791 for pos in cwr(power_terms, 8):
%o A345791     tot = sum(pos)
%o A345791     keep[tot] += 1
%o A345791     rets = sorted([k for k, v in keep.items() if v == 9])
%o A345791     for x in range(len(rets)):
%o A345791         print(rets[x])
%Y A345791 Cf. A345539, A345781, A345790, A345792, A345801, A345841.
%K A345791 nonn
%O A345791 1,1
%A A345791 _David Consiglio, Jr._, Jun 26 2021