This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345792 #6 Jul 31 2021 22:37:34 %S A345792 1185,1243,1288,1295,1299,1386,1397,1400,1412,1423,1448,1449,1451, %T A345792 1458,1460,1464,1467,1475,1477,1501,1503,1505,1512,1513,1516,1539, %U A345792 1540,1541,1553,1558,1559,1568,1577,1578,1586,1588,1591,1592,1594,1595,1596,1600,1608 %N A345792 Numbers that are the sum of eight cubes in exactly ten ways. %C A345792 Differs from A345540 at term 3 because 1262 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 10^3 = 1^3 + 1^3 + 1^3 + 4^3 + 5^3 + 5^3 + 6^3 + 9^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 7^3 + 7^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 6^3 + 6^3 + 9^3 = 1^3 + 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3 = 1^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 8^3 = 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 10^3 = 2^3 + 2^3 + 4^3 + 4^3 + 6^3 + 6^3 + 7^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3 + 7^3 = 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 9^3. %C A345792 Likely finite. %H A345792 Sean A. Irvine, <a href="/A345792/b345792.txt">Table of n, a(n) for n = 1..161</a> %e A345792 1243 is a term because 1243 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 8^3 = 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 + 7^3. %o A345792 (Python) %o A345792 from itertools import combinations_with_replacement as cwr %o A345792 from collections import defaultdict %o A345792 keep = defaultdict(lambda: 0) %o A345792 power_terms = [x**3 for x in range(1, 1000)] %o A345792 for pos in cwr(power_terms, 8): %o A345792 tot = sum(pos) %o A345792 keep[tot] += 1 %o A345792 rets = sorted([k for k, v in keep.items() if v == 10]) %o A345792 for x in range(len(rets)): %o A345792 print(rets[x]) %Y A345792 Cf. A345540, A345782, A345791, A345802, A345842. %K A345792 nonn %O A345792 1,1 %A A345792 _David Consiglio, Jr._, Jun 26 2021