cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345792 Numbers that are the sum of eight cubes in exactly ten ways.

This page as a plain text file.
%I A345792 #6 Jul 31 2021 22:37:34
%S A345792 1185,1243,1288,1295,1299,1386,1397,1400,1412,1423,1448,1449,1451,
%T A345792 1458,1460,1464,1467,1475,1477,1501,1503,1505,1512,1513,1516,1539,
%U A345792 1540,1541,1553,1558,1559,1568,1577,1578,1586,1588,1591,1592,1594,1595,1596,1600,1608
%N A345792 Numbers that are the sum of eight cubes in exactly ten ways.
%C A345792 Differs from A345540 at term 3 because 1262 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 + 5^3 + 10^3  = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 10^3  = 1^3 + 1^3 + 1^3 + 4^3 + 5^3 + 5^3 + 6^3 + 9^3  = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 7^3 + 7^3 + 8^3  = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 6^3 + 6^3 + 9^3  = 1^3 + 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3  = 1^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 8^3  = 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 10^3  = 2^3 + 2^3 + 4^3 + 4^3 + 6^3 + 6^3 + 7^3 + 7^3  = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3 + 7^3 + 7^3  = 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 9^3.
%C A345792 Likely finite.
%H A345792 Sean A. Irvine, <a href="/A345792/b345792.txt">Table of n, a(n) for n = 1..161</a>
%e A345792 1243 is a term because 1243 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 8^3 = 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 9^3 = 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 + 7^3.
%o A345792 (Python)
%o A345792 from itertools import combinations_with_replacement as cwr
%o A345792 from collections import defaultdict
%o A345792 keep = defaultdict(lambda: 0)
%o A345792 power_terms = [x**3 for x in range(1, 1000)]
%o A345792 for pos in cwr(power_terms, 8):
%o A345792     tot = sum(pos)
%o A345792     keep[tot] += 1
%o A345792     rets = sorted([k for k, v in keep.items() if v == 10])
%o A345792     for x in range(len(rets)):
%o A345792         print(rets[x])
%Y A345792 Cf. A345540, A345782, A345791, A345802, A345842.
%K A345792 nonn
%O A345792 1,1
%A A345792 _David Consiglio, Jr._, Jun 26 2021