cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345795 Numbers that are the sum of nine cubes in exactly three ways.

This page as a plain text file.
%I A345795 #6 Jul 31 2021 22:32:41
%S A345795 231,238,245,250,259,271,276,278,280,285,287,290,292,294,297,299,301,
%T A345795 302,309,311,313,315,316,318,322,327,334,335,337,339,341,346,350,353,
%U A345795 357,362,365,379,386,387,388,391,393,394,395,397,398,405,412,418,420,421
%N A345795 Numbers that are the sum of nine cubes in exactly three ways.
%C A345795 Differs from A345542 at term 1 because 224 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3  = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3  = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3  = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3.
%C A345795 Likely finite.
%H A345795 Sean A. Irvine, <a href="/A345795/b345795.txt">Table of n, a(n) for n = 1..136</a>
%e A345795 231 is a term because 231 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
%o A345795 (Python)
%o A345795 from itertools import combinations_with_replacement as cwr
%o A345795 from collections import defaultdict
%o A345795 keep = defaultdict(lambda: 0)
%o A345795 power_terms = [x**3 for x in range(1, 1000)]
%o A345795 for pos in cwr(power_terms, 9):
%o A345795     tot = sum(pos)
%o A345795     keep[tot] += 1
%o A345795     rets = sorted([k for k, v in keep.items() if v == 3])
%o A345795     for x in range(len(rets)):
%o A345795         print(rets[x])
%Y A345795 Cf. A345542, A345785, A345794, A345796, A345805, A345845.
%K A345795 nonn
%O A345795 1,1
%A A345795 _David Consiglio, Jr._, Jun 26 2021