This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345795 #6 Jul 31 2021 22:32:41 %S A345795 231,238,245,250,259,271,276,278,280,285,287,290,292,294,297,299,301, %T A345795 302,309,311,313,315,316,318,322,327,334,335,337,339,341,346,350,353, %U A345795 357,362,365,379,386,387,388,391,393,394,395,397,398,405,412,418,420,421 %N A345795 Numbers that are the sum of nine cubes in exactly three ways. %C A345795 Differs from A345542 at term 1 because 224 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3. %C A345795 Likely finite. %H A345795 Sean A. Irvine, <a href="/A345795/b345795.txt">Table of n, a(n) for n = 1..136</a> %e A345795 231 is a term because 231 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3. %o A345795 (Python) %o A345795 from itertools import combinations_with_replacement as cwr %o A345795 from collections import defaultdict %o A345795 keep = defaultdict(lambda: 0) %o A345795 power_terms = [x**3 for x in range(1, 1000)] %o A345795 for pos in cwr(power_terms, 9): %o A345795 tot = sum(pos) %o A345795 keep[tot] += 1 %o A345795 rets = sorted([k for k, v in keep.items() if v == 3]) %o A345795 for x in range(len(rets)): %o A345795 print(rets[x]) %Y A345795 Cf. A345542, A345785, A345794, A345796, A345805, A345845. %K A345795 nonn %O A345795 1,1 %A A345795 _David Consiglio, Jr._, Jun 26 2021