This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345796 #6 Jul 31 2021 22:32:44 %S A345796 224,257,264,283,320,348,355,372,374,376,381,383,390,400,402,407,411, %T A345796 414,416,442,450,453,454,461,474,476,481,486,488,500,503,509,510,514, %U A345796 519,528,529,537,542,543,544,545,548,550,552,554,555,557,564,572,573,574 %N A345796 Numbers that are the sum of nine cubes in exactly four ways. %C A345796 Differs from A345543 at term 17 because 409 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3. %C A345796 Likely finite. %H A345796 Sean A. Irvine, <a href="/A345796/b345796.txt">Table of n, a(n) for n = 1..124</a> %e A345796 257 is a term because 257 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3. %o A345796 (Python) %o A345796 from itertools import combinations_with_replacement as cwr %o A345796 from collections import defaultdict %o A345796 keep = defaultdict(lambda: 0) %o A345796 power_terms = [x**3 for x in range(1, 1000)] %o A345796 for pos in cwr(power_terms, 9): %o A345796 tot = sum(pos) %o A345796 keep[tot] += 1 %o A345796 rets = sorted([k for k, v in keep.items() if v == 4]) %o A345796 for x in range(len(rets)): %o A345796 print(rets[x]) %Y A345796 Cf. A345543, A345786, A345795, A345797, A345806, A345846. %K A345796 nonn %O A345796 1,1 %A A345796 _David Consiglio, Jr._, Jun 26 2021