cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345796 Numbers that are the sum of nine cubes in exactly four ways.

This page as a plain text file.
%I A345796 #6 Jul 31 2021 22:32:44
%S A345796 224,257,264,283,320,348,355,372,374,376,381,383,390,400,402,407,411,
%T A345796 414,416,442,450,453,454,461,474,476,481,486,488,500,503,509,510,514,
%U A345796 519,528,529,537,542,543,544,545,548,550,552,554,555,557,564,572,573,574
%N A345796 Numbers that are the sum of nine cubes in exactly four ways.
%C A345796 Differs from A345543 at term 17 because 409 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3  = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3  = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 5^3  = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 6^3  = 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3.
%C A345796 Likely finite.
%H A345796 Sean A. Irvine, <a href="/A345796/b345796.txt">Table of n, a(n) for n = 1..124</a>
%e A345796 257 is a term because 257 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3.
%o A345796 (Python)
%o A345796 from itertools import combinations_with_replacement as cwr
%o A345796 from collections import defaultdict
%o A345796 keep = defaultdict(lambda: 0)
%o A345796 power_terms = [x**3 for x in range(1, 1000)]
%o A345796 for pos in cwr(power_terms, 9):
%o A345796     tot = sum(pos)
%o A345796     keep[tot] += 1
%o A345796     rets = sorted([k for k, v in keep.items() if v == 4])
%o A345796     for x in range(len(rets)):
%o A345796         print(rets[x])
%Y A345796 Cf. A345543, A345786, A345795, A345797, A345806, A345846.
%K A345796 nonn
%O A345796 1,1
%A A345796 _David Consiglio, Jr._, Jun 26 2021