cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345800 Numbers that are the sum of nine cubes in exactly eight ways.

This page as a plain text file.
%I A345800 #6 Jul 31 2021 22:32:58
%S A345800 744,770,805,818,840,842,844,847,866,868,877,880,883,887,894,908,909,
%T A345800 910,911,913,915,916,920,940,945,946,948,950,952,954,955,957,961,964,
%U A345800 965,972,976,983,987,990,1000,1001,1002,1006,1007,1013,1015,1025,1028,1032
%N A345800 Numbers that are the sum of nine cubes in exactly eight ways.
%C A345800 Differs from A345547 at term 9 because 859 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 6^3 + 8^3  = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 9^3  = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 + 7^3  = 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3  = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 7^3 + 7^3  = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 8^3  = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 + 7^3  = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 6^3 + 8^3  = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 7^3.
%C A345800 Likely finite.
%H A345800 Sean A. Irvine, <a href="/A345800/b345800.txt">Table of n, a(n) for n = 1..93</a>
%e A345800 770 is a term because 770 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 7^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 6^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 7^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3.
%o A345800 (Python)
%o A345800 from itertools import combinations_with_replacement as cwr
%o A345800 from collections import defaultdict
%o A345800 keep = defaultdict(lambda: 0)
%o A345800 power_terms = [x**3 for x in range(1, 1000)]
%o A345800 for pos in cwr(power_terms, 9):
%o A345800     tot = sum(pos)
%o A345800     keep[tot] += 1
%o A345800     rets = sorted([k for k, v in keep.items() if v == 8])
%o A345800     for x in range(len(rets)):
%o A345800         print(rets[x])
%Y A345800 Cf. A345547, A345790, A345799, A345801, A345810, A345850.
%K A345800 nonn
%O A345800 1,1
%A A345800 _David Consiglio, Jr._, Jun 26 2021