cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345801 Numbers that are the sum of nine cubes in exactly nine ways.

This page as a plain text file.
%I A345801 #6 Jul 31 2021 22:33:02
%S A345801 859,861,896,903,922,929,935,939,959,973,997,999,1009,1016,1020,1023,
%T A345801 1027,1029,1030,1034,1035,1036,1037,1041,1046,1059,1060,1064,1065,
%U A345801 1066,1067,1071,1072,1079,1086,1091,1105,1116,1131,1138,1146,1152,1155,1157,1158
%N A345801 Numbers that are the sum of nine cubes in exactly nine ways.
%C A345801 Differs from A345548 at term 10 because 966 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 6^3 + 9^3  = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 8^3  = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 9^3  = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3 + 7^3  = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 + 7^3  = 1^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3  = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 9^3  = 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 5^3 + 6^3 + 7^3  = 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 + 7^3  = 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3.
%C A345801 Likely finite.
%H A345801 Sean A. Irvine, <a href="/A345801/b345801.txt">Table of n, a(n) for n = 1..86</a>
%e A345801 861 is a term because 861 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 5^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 8^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3.
%o A345801 (Python)
%o A345801 from itertools import combinations_with_replacement as cwr
%o A345801 from collections import defaultdict
%o A345801 keep = defaultdict(lambda: 0)
%o A345801 power_terms = [x**3 for x in range(1, 1000)]
%o A345801 for pos in cwr(power_terms, 9):
%o A345801     tot = sum(pos)
%o A345801     keep[tot] += 1
%o A345801     rets = sorted([k for k, v in keep.items() if v == 9])
%o A345801     for x in range(len(rets)):
%o A345801         print(rets[x])
%Y A345801 Cf. A345548, A345791, A345800, A345802, A345811, A345851.
%K A345801 nonn
%O A345801 1,1
%A A345801 _David Consiglio, Jr._, Jun 26 2021