This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345801 #6 Jul 31 2021 22:33:02 %S A345801 859,861,896,903,922,929,935,939,959,973,997,999,1009,1016,1020,1023, %T A345801 1027,1029,1030,1034,1035,1036,1037,1041,1046,1059,1060,1064,1065, %U A345801 1066,1067,1071,1072,1079,1086,1091,1105,1116,1131,1138,1146,1152,1155,1157,1158 %N A345801 Numbers that are the sum of nine cubes in exactly nine ways. %C A345801 Differs from A345548 at term 10 because 966 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 6^3 + 9^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 8^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 9^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3 + 7^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 + 7^3 = 1^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 9^3 = 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 5^3 + 6^3 + 7^3 = 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 + 7^3 = 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3. %C A345801 Likely finite. %H A345801 Sean A. Irvine, <a href="/A345801/b345801.txt">Table of n, a(n) for n = 1..86</a> %e A345801 861 is a term because 861 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 5^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 8^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3. %o A345801 (Python) %o A345801 from itertools import combinations_with_replacement as cwr %o A345801 from collections import defaultdict %o A345801 keep = defaultdict(lambda: 0) %o A345801 power_terms = [x**3 for x in range(1, 1000)] %o A345801 for pos in cwr(power_terms, 9): %o A345801 tot = sum(pos) %o A345801 keep[tot] += 1 %o A345801 rets = sorted([k for k, v in keep.items() if v == 9]) %o A345801 for x in range(len(rets)): %o A345801 print(rets[x]) %Y A345801 Cf. A345548, A345791, A345800, A345802, A345811, A345851. %K A345801 nonn %O A345801 1,1 %A A345801 _David Consiglio, Jr._, Jun 26 2021