cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345802 Numbers that are the sum of nine cubes in exactly ten ways.

This page as a plain text file.
%I A345802 #6 Jul 31 2021 22:33:06
%S A345802 966,971,978,1004,1018,1022,1055,1056,1062,1063,1074,1076,1078,1085,
%T A345802 1088,1092,1093,1095,1098,1100,1104,1111,1112,1114,1117,1119,1124,
%U A345802 1130,1134,1135,1139,1140,1142,1147,1149,1153,1160,1167,1168,1170,1180,1181,1182,1183
%N A345802 Numbers that are the sum of nine cubes in exactly ten ways.
%C A345802 Differs from A345549 at term 4 because 985 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 9^3  = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 9^3  = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3  = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 4^3 + 6^3 + 7^3 + 7^3  = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 9^3  = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 6^3 + 6^3 + 8^3  = 1^3 + 2^3 + 2^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 7^3  = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3 + 7^3  = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3  = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 9^3  = 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3 + 7^3  = 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 + 7^3.
%C A345802 Likely finite.
%H A345802 Sean A. Irvine, <a href="/A345802/b345802.txt">Table of n, a(n) for n = 1..111</a>
%e A345802 971 is a term because 971 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3.
%o A345802 (Python)
%o A345802 from itertools import combinations_with_replacement as cwr
%o A345802 from collections import defaultdict
%o A345802 keep = defaultdict(lambda: 0)
%o A345802 power_terms = [x**3 for x in range(1, 1000)]
%o A345802 for pos in cwr(power_terms, 9):
%o A345802     tot = sum(pos)
%o A345802     keep[tot] += 1
%o A345802     rets = sorted([k for k, v in keep.items() if v == 10])
%o A345802     for x in range(len(rets)):
%o A345802         print(rets[x])
%Y A345802 Cf. A345549, A345792, A345801, A345812, A345852.
%K A345802 nonn
%O A345802 1,1
%A A345802 _David Consiglio, Jr._, Jun 26 2021