cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345804 Numbers that are the sum of ten cubes in exactly two ways.

This page as a plain text file.
%I A345804 #6 Jul 31 2021 22:27:12
%S A345804 73,80,99,134,136,141,148,155,160,162,167,169,174,176,183,186,188,190,
%T A345804 192,193,195,199,202,204,206,209,211,212,213,214,216,218,221,223,228,
%U A345804 230,235,240,244,247,249,254,262,266,269,270,273,274,290,292,297,304
%N A345804 Numbers that are the sum of ten cubes in exactly two ways.
%C A345804 Differs from A345550 at term 22 because 197 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3  = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3  = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3.
%C A345804 Likely finite.
%H A345804 Sean A. Irvine, <a href="/A345804/b345804.txt">Table of n, a(n) for n = 1..90</a>
%e A345804 80 is a term because 80 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3.
%o A345804 (Python)
%o A345804 from itertools import combinations_with_replacement as cwr
%o A345804 from collections import defaultdict
%o A345804 keep = defaultdict(lambda: 0)
%o A345804 power_terms = [x**3 for x in range(1, 1000)]
%o A345804 for pos in cwr(power_terms, 10):
%o A345804     tot = sum(pos)
%o A345804     keep[tot] += 1
%o A345804     rets = sorted([k for k, v in keep.items() if v == 2])
%o A345804     for x in range(len(rets)):
%o A345804         print(rets[x])
%Y A345804 Cf. A345550, A345794, A345803, A345805, A345854.
%K A345804 nonn
%O A345804 1,1
%A A345804 _David Consiglio, Jr._, Jun 26 2021