This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345804 #6 Jul 31 2021 22:27:12 %S A345804 73,80,99,134,136,141,148,155,160,162,167,169,174,176,183,186,188,190, %T A345804 192,193,195,199,202,204,206,209,211,212,213,214,216,218,221,223,228, %U A345804 230,235,240,244,247,249,254,262,266,269,270,273,274,290,292,297,304 %N A345804 Numbers that are the sum of ten cubes in exactly two ways. %C A345804 Differs from A345550 at term 22 because 197 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3. %C A345804 Likely finite. %H A345804 Sean A. Irvine, <a href="/A345804/b345804.txt">Table of n, a(n) for n = 1..90</a> %e A345804 80 is a term because 80 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3. %o A345804 (Python) %o A345804 from itertools import combinations_with_replacement as cwr %o A345804 from collections import defaultdict %o A345804 keep = defaultdict(lambda: 0) %o A345804 power_terms = [x**3 for x in range(1, 1000)] %o A345804 for pos in cwr(power_terms, 10): %o A345804 tot = sum(pos) %o A345804 keep[tot] += 1 %o A345804 rets = sorted([k for k, v in keep.items() if v == 2]) %o A345804 for x in range(len(rets)): %o A345804 print(rets[x]) %Y A345804 Cf. A345550, A345794, A345803, A345805, A345854. %K A345804 nonn %O A345804 1,1 %A A345804 _David Consiglio, Jr._, Jun 26 2021