cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345805 Numbers that are the sum of ten cubes in exactly three ways.

This page as a plain text file.
%I A345805 #6 Jul 31 2021 22:27:17
%S A345805 197,239,246,253,260,267,277,279,281,293,295,298,300,302,303,305,309,
%T A345805 312,316,317,319,324,326,329,330,335,336,338,340,343,344,345,351,352,
%U A345805 354,358,361,362,364,365,368,370,379,386,387,388,392,394,395,396,402,406
%N A345805 Numbers that are the sum of ten cubes in exactly three ways.
%C A345805 Differs from A345551 at term 2 because 225 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3  = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3  = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3  = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3.
%C A345805 Likely finite.
%H A345805 Sean A. Irvine, <a href="/A345805/b345805.txt">Table of n, a(n) for n = 1..93</a>
%e A345805 225 is a term because 225 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3.
%o A345805 (Python)
%o A345805 from itertools import combinations_with_replacement as cwr
%o A345805 from collections import defaultdict
%o A345805 keep = defaultdict(lambda: 0)
%o A345805 power_terms = [x**3 for x in range(1, 1000)]
%o A345805 for pos in cwr(power_terms, 10):
%o A345805     tot = sum(pos)
%o A345805     keep[tot] += 1
%o A345805     rets = sorted([k for k, v in keep.items() if v == 3])
%o A345805     for x in range(len(rets)):
%o A345805         print(rets[x])
%Y A345805 Cf. A345551, A345795, A345804, A345806, A345855.
%K A345805 nonn
%O A345805 1,1
%A A345805 _David Consiglio, Jr._, Jun 26 2021