This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345805 #6 Jul 31 2021 22:27:17 %S A345805 197,239,246,253,260,267,277,279,281,293,295,298,300,302,303,305,309, %T A345805 312,316,317,319,324,326,329,330,335,336,338,340,343,344,345,351,352, %U A345805 354,358,361,362,364,365,368,370,379,386,387,388,392,394,395,396,402,406 %N A345805 Numbers that are the sum of ten cubes in exactly three ways. %C A345805 Differs from A345551 at term 2 because 225 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3. %C A345805 Likely finite. %H A345805 Sean A. Irvine, <a href="/A345805/b345805.txt">Table of n, a(n) for n = 1..93</a> %e A345805 225 is a term because 225 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3. %o A345805 (Python) %o A345805 from itertools import combinations_with_replacement as cwr %o A345805 from collections import defaultdict %o A345805 keep = defaultdict(lambda: 0) %o A345805 power_terms = [x**3 for x in range(1, 1000)] %o A345805 for pos in cwr(power_terms, 10): %o A345805 tot = sum(pos) %o A345805 keep[tot] += 1 %o A345805 rets = sorted([k for k, v in keep.items() if v == 3]) %o A345805 for x in range(len(rets)): %o A345805 print(rets[x]) %Y A345805 Cf. A345551, A345795, A345804, A345806, A345855. %K A345805 nonn %O A345805 1,1 %A A345805 _David Consiglio, Jr._, Jun 26 2021