cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345809 Numbers that are the sum of ten cubes in exactly seven ways.

This page as a plain text file.
%I A345809 #6 Jul 31 2021 22:27:30
%S A345809 440,473,499,506,525,532,534,567,571,584,588,597,599,604,606,627,637,
%T A345809 639,640,656,660,663,669,670,673,680,682,689,691,693,696,701,702,704,
%U A345809 707,717,718,719,726,729,735,738,743,744,750,755,761,762,763,770,783,784
%N A345809 Numbers that are the sum of ten cubes in exactly seven ways.
%C A345809 Differs from A345555 at term 16 because 623 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 5^3 + 5^3 + 6^3  = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 5^3 + 6^3 + 6^3  = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 5^3 + 7^3  = 1^3 + 1^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3  = 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3  = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 6^3 + 7^3  = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3  = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 7^3.
%C A345809 Likely finite.
%H A345809 Sean A. Irvine, <a href="/A345809/b345809.txt">Table of n, a(n) for n = 1..78</a>
%e A345809 473 is a term because 473 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3.
%o A345809 (Python)
%o A345809 from itertools import combinations_with_replacement as cwr
%o A345809 from collections import defaultdict
%o A345809 keep = defaultdict(lambda: 0)
%o A345809 power_terms = [x**3 for x in range(1, 1000)]
%o A345809 for pos in cwr(power_terms, 10):
%o A345809     tot = sum(pos)
%o A345809     keep[tot] += 1
%o A345809     rets = sorted([k for k, v in keep.items() if v == 7])
%o A345809     for x in range(len(rets)):
%o A345809         print(rets[x])
%Y A345809 Cf. A345555, A345799, A345808, A345810, A345859.
%K A345809 nonn
%O A345809 1,1
%A A345809 _David Consiglio, Jr._, Jun 26 2021