cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345810 Numbers that are the sum of ten cubes in exactly eight ways.

This page as a plain text file.
%I A345810 #6 Jul 31 2021 22:27:34
%S A345810 623,625,630,644,662,665,677,684,697,699,708,715,723,725,728,730,733,
%T A345810 734,747,749,751,757,758,759,760,764,766,769,775,776,777,785,786,787,
%U A345810 789,793,794,796,804,810,811,814,817,820,826,827,828,829,830,831,836,838
%N A345810 Numbers that are the sum of ten cubes in exactly eight ways.
%C A345810 Differs from A345556 at term 4 because 632 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 8^3  = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3  = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3  = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 6^3  = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3  = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 5^3 + 6^3  = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3  = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 6^3 + 6^3  = 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3.
%C A345810 Likely finite.
%H A345810 Sean A. Irvine, <a href="/A345810/b345810.txt">Table of n, a(n) for n = 1..75</a>
%e A345810 625 is a term because 625 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 5^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3.
%o A345810 (Python)
%o A345810 from itertools import combinations_with_replacement as cwr
%o A345810 from collections import defaultdict
%o A345810 keep = defaultdict(lambda: 0)
%o A345810 power_terms = [x**3 for x in range(1, 1000)]
%o A345810 for pos in cwr(power_terms, 10):
%o A345810     tot = sum(pos)
%o A345810     keep[tot] += 1
%o A345810     rets = sorted([k for k, v in keep.items() if v == 8])
%o A345810     for x in range(len(rets)):
%o A345810         print(rets[x])
%Y A345810 Cf. A345556, A345800, A345809, A345811, A345860.
%K A345810 nonn
%O A345810 1,1
%A A345810 _David Consiglio, Jr._, Jun 26 2021