cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345811 Numbers that are the sum of ten cubes in exactly nine ways.

This page as a plain text file.
%I A345811 #6 Jul 31 2021 22:27:38
%S A345811 632,651,658,688,695,714,736,740,745,752,773,778,780,790,795,799,801,
%T A345811 812,813,815,816,818,821,823,825,841,843,849,851,852,853,855,856,857,
%U A345811 858,864,866,873,880,882,883,885,890,891,892,899,905,908,913,922,924,926
%N A345811 Numbers that are the sum of ten cubes in exactly nine ways.
%C A345811 Differs from A345557 at term 7 because 721 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 5^3 + 6^3  = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 + 5^3 + 6^3 + 6^3  = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 6^3 + 6^3 + 6^3  = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 6^3 + 7^3  = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 8^3  = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3  = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 6^3  = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3  = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 6^3 + 6^3  = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 7^3.
%C A345811 Likely finite.
%H A345811 Sean A. Irvine, <a href="/A345811/b345811.txt">Table of n, a(n) for n = 1..79</a>
%e A345811 651 is a term because 651 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3.
%o A345811 (Python)
%o A345811 from itertools import combinations_with_replacement as cwr
%o A345811 from collections import defaultdict
%o A345811 keep = defaultdict(lambda: 0)
%o A345811 power_terms = [x**3 for x in range(1, 1000)]
%o A345811 for pos in cwr(power_terms, 10):
%o A345811     tot = sum(pos)
%o A345811     keep[tot] += 1
%o A345811     rets = sorted([k for k, v in keep.items() if v == 9])
%o A345811     for x in range(len(rets)):
%o A345811         print(rets[x])
%Y A345811 Cf. A345557, A345801, A345810, A345812, A345861.
%K A345811 nonn
%O A345811 1,1
%A A345811 _David Consiglio, Jr._, Jun 26 2021