This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345812 #6 Jul 31 2021 22:27:44 %S A345812 721,754,756,782,792,797,806,808,819,834,847,848,850,860,871,874,876, %T A345812 877,878,881,884,886,893,902,903,907,909,910,916,917,918,921,929,932, %U A345812 933,936,937,938,941,942,944,945,955,965,966,968,973,991,994,999,1001 %N A345812 Numbers that are the sum of ten cubes in exactly ten ways. %C A345812 Differs from A345558 at term 4 because 771 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 9^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 5^3 + 8^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 4^3 + 7^3 + 7^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 6^3 + 8^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 + 7^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 6^3 + 7^3 = 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3. %C A345812 Likely finite. %H A345812 Sean A. Irvine, <a href="/A345812/b345812.txt">Table of n, a(n) for n = 1..72</a> %e A345812 754 is a term because 754 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 4^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 6^3 = 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3. %o A345812 (Python) %o A345812 from itertools import combinations_with_replacement as cwr %o A345812 from collections import defaultdict %o A345812 keep = defaultdict(lambda: 0) %o A345812 power_terms = [x**3 for x in range(1, 1000)] %o A345812 for pos in cwr(power_terms, 10): %o A345812 tot = sum(pos) %o A345812 keep[tot] += 1 %o A345812 rets = sorted([k for k, v in keep.items() if v == 10]) %o A345812 for x in range(len(rets)): %o A345812 print(rets[x]) %Y A345812 Cf. A345558, A345802, A345811, A345862. %K A345812 nonn %O A345812 1,1 %A A345812 _David Consiglio, Jr._, Jun 26 2021