cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345813 Numbers that are the sum of six fourth powers in exactly one ways.

This page as a plain text file.
%I A345813 #6 Jul 31 2021 21:57:09
%S A345813 6,21,36,51,66,81,86,96,101,116,131,146,161,166,181,196,211,226,246,
%T A345813 306,321,326,336,371,386,401,406,436,451,466,486,501,546,561,576,581,
%U A345813 611,626,630,641,645,660,661,675,676,690,691,705,706,710,725,740,755,756
%N A345813 Numbers that are the sum of six fourth powers in exactly one ways.
%C A345813 Differs from A003340 at term 20 because 261 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 = 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4.
%H A345813 Sean A. Irvine, <a href="/A345813/b345813.txt">Table of n, a(n) for n = 1..10000</a>
%e A345813 21 is a term because 21 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.
%o A345813 (Python)
%o A345813 from itertools import combinations_with_replacement as cwr
%o A345813 from collections import defaultdict
%o A345813 keep = defaultdict(lambda: 0)
%o A345813 power_terms = [x**4 for x in range(1, 1000)]
%o A345813 for pos in cwr(power_terms, 6):
%o A345813     tot = sum(pos)
%o A345813     keep[tot] += 1
%o A345813     rets = sorted([k for k, v in keep.items() if v == 1])
%o A345813     for x in range(len(rets)):
%o A345813         print(rets[x])
%Y A345813 Cf. A003340, A048929, A344190, A345814, A345823, A346356.
%K A345813 nonn
%O A345813 1,1
%A A345813 _David Consiglio, Jr._, Jun 26 2021