This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345813 #6 Jul 31 2021 21:57:09 %S A345813 6,21,36,51,66,81,86,96,101,116,131,146,161,166,181,196,211,226,246, %T A345813 306,321,326,336,371,386,401,406,436,451,466,486,501,546,561,576,581, %U A345813 611,626,630,641,645,660,661,675,676,690,691,705,706,710,725,740,755,756 %N A345813 Numbers that are the sum of six fourth powers in exactly one ways. %C A345813 Differs from A003340 at term 20 because 261 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 = 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4. %H A345813 Sean A. Irvine, <a href="/A345813/b345813.txt">Table of n, a(n) for n = 1..10000</a> %e A345813 21 is a term because 21 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4. %o A345813 (Python) %o A345813 from itertools import combinations_with_replacement as cwr %o A345813 from collections import defaultdict %o A345813 keep = defaultdict(lambda: 0) %o A345813 power_terms = [x**4 for x in range(1, 1000)] %o A345813 for pos in cwr(power_terms, 6): %o A345813 tot = sum(pos) %o A345813 keep[tot] += 1 %o A345813 rets = sorted([k for k, v in keep.items() if v == 1]) %o A345813 for x in range(len(rets)): %o A345813 print(rets[x]) %Y A345813 Cf. A003340, A048929, A344190, A345814, A345823, A346356. %K A345813 nonn %O A345813 1,1 %A A345813 _David Consiglio, Jr._, Jun 26 2021