This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345814 #6 Jul 31 2021 21:57:13 %S A345814 261,276,291,341,356,421,516,531,596,771,885,900,965,1140,1361,1509, %T A345814 1556,1571,1636,1811,2180,2596,2611,2661,2691,2706,2721,2741,2756, %U A345814 2771,2786,2836,2931,2946,2961,3011,3026,3091,3186,3201,3220,3266,3285,3300,3315 %N A345814 Numbers that are the sum of six fourth powers in exactly two ways. %C A345814 Differs from A345559 at term 25 because 2676 = 1^4 + 1^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4. %H A345814 Sean A. Irvine, <a href="/A345814/b345814.txt">Table of n, a(n) for n = 1..10000</a> %e A345814 276 is a term because 276 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4. %o A345814 (Python) %o A345814 from itertools import combinations_with_replacement as cwr %o A345814 from collections import defaultdict %o A345814 keep = defaultdict(lambda: 0) %o A345814 power_terms = [x**4 for x in range(1, 1000)] %o A345814 for pos in cwr(power_terms, 6): %o A345814 tot = sum(pos) %o A345814 keep[tot] += 1 %o A345814 rets = sorted([k for k, v in keep.items() if v == 2]) %o A345814 for x in range(len(rets)): %o A345814 print(rets[x]) %Y A345814 Cf. A048930, A344237, A345559, A345813, A345815, A345824, A346357. %K A345814 nonn %O A345814 1,1 %A A345814 _David Consiglio, Jr._, Jun 26 2021