cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345814 Numbers that are the sum of six fourth powers in exactly two ways.

This page as a plain text file.
%I A345814 #6 Jul 31 2021 21:57:13
%S A345814 261,276,291,341,356,421,516,531,596,771,885,900,965,1140,1361,1509,
%T A345814 1556,1571,1636,1811,2180,2596,2611,2661,2691,2706,2721,2741,2756,
%U A345814 2771,2786,2836,2931,2946,2961,3011,3026,3091,3186,3201,3220,3266,3285,3300,3315
%N A345814 Numbers that are the sum of six fourth powers in exactly two ways.
%C A345814 Differs from A345559 at term 25 because 2676 = 1^4 + 1^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
%H A345814 Sean A. Irvine, <a href="/A345814/b345814.txt">Table of n, a(n) for n = 1..10000</a>
%e A345814 276 is a term because 276 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
%o A345814 (Python)
%o A345814 from itertools import combinations_with_replacement as cwr
%o A345814 from collections import defaultdict
%o A345814 keep = defaultdict(lambda: 0)
%o A345814 power_terms = [x**4 for x in range(1, 1000)]
%o A345814 for pos in cwr(power_terms, 6):
%o A345814     tot = sum(pos)
%o A345814     keep[tot] += 1
%o A345814     rets = sorted([k for k, v in keep.items() if v == 2])
%o A345814     for x in range(len(rets)):
%o A345814         print(rets[x])
%Y A345814 Cf. A048930, A344237, A345559, A345813, A345815, A345824, A346357.
%K A345814 nonn
%O A345814 1,1
%A A345814 _David Consiglio, Jr._, Jun 26 2021