cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345815 Numbers that are the sum of six fourth powers in exactly three ways.

This page as a plain text file.
%I A345815 #6 Jul 31 2021 21:57:16
%S A345815 2676,2851,2916,4131,4226,4241,4306,4371,4481,4850,5346,5411,5521,
%T A345815 5586,5651,6561,6611,6756,6771,6801,6821,6836,6851,6931,7106,7235,
%U A345815 7475,7491,7666,7841,7906,7971,8146,8211,8321,8386,8451,8531,8706,9011,9156,9171,9186
%N A345815 Numbers that are the sum of six fourth powers in exactly three ways.
%C A345815 Differs from A345560 at term 18 because 6626 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4  = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4  = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
%H A345815 Sean A. Irvine, <a href="/A345815/b345815.txt">Table of n, a(n) for n = 1..10000</a>
%e A345815 2851 is a term because 2851 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
%o A345815 (Python)
%o A345815 from itertools import combinations_with_replacement as cwr
%o A345815 from collections import defaultdict
%o A345815 keep = defaultdict(lambda: 0)
%o A345815 power_terms = [x**4 for x in range(1, 1000)]
%o A345815 for pos in cwr(power_terms, 6):
%o A345815     tot = sum(pos)
%o A345815     keep[tot] += 1
%o A345815     rets = sorted([k for k, v in keep.items() if v == 3])
%o A345815     for x in range(len(rets)):
%o A345815         print(rets[x])
%Y A345815 Cf. A048931, A344244, A345560, A345814, A345816, A345825, A346358.
%K A345815 nonn
%O A345815 1,1
%A A345815 _David Consiglio, Jr._, Jun 26 2021