This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345815 #6 Jul 31 2021 21:57:16 %S A345815 2676,2851,2916,4131,4226,4241,4306,4371,4481,4850,5346,5411,5521, %T A345815 5586,5651,6561,6611,6756,6771,6801,6821,6836,6851,6931,7106,7235, %U A345815 7475,7491,7666,7841,7906,7971,8146,8211,8321,8386,8451,8531,8706,9011,9156,9171,9186 %N A345815 Numbers that are the sum of six fourth powers in exactly three ways. %C A345815 Differs from A345560 at term 18 because 6626 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4. %H A345815 Sean A. Irvine, <a href="/A345815/b345815.txt">Table of n, a(n) for n = 1..10000</a> %e A345815 2851 is a term because 2851 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4. %o A345815 (Python) %o A345815 from itertools import combinations_with_replacement as cwr %o A345815 from collections import defaultdict %o A345815 keep = defaultdict(lambda: 0) %o A345815 power_terms = [x**4 for x in range(1, 1000)] %o A345815 for pos in cwr(power_terms, 6): %o A345815 tot = sum(pos) %o A345815 keep[tot] += 1 %o A345815 rets = sorted([k for k, v in keep.items() if v == 3]) %o A345815 for x in range(len(rets)): %o A345815 print(rets[x]) %Y A345815 Cf. A048931, A344244, A345560, A345814, A345816, A345825, A346358. %K A345815 nonn %O A345815 1,1 %A A345815 _David Consiglio, Jr._, Jun 26 2021