cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345816 Numbers that are the sum of six fourth powers in exactly four ways.

This page as a plain text file.
%I A345816 #8 Mar 11 2023 14:04:28
%S A345816 6626,6691,6866,9251,9491,10115,10706,10786,11555,12595,14225,14691,
%T A345816 14771,15315,15330,15570,16051,16595,16660,16675,16850,17090,17091,
%U A345816 17236,17316,17331,17346,17860,17875,17940,17955,18195,18786,18851,19155,19170,19475,19490
%N A345816 Numbers that are the sum of six fourth powers in exactly four ways.
%C A345816 Differs from A345561 at term 16 because 15395 = 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 10^4  = 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4  = 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4  = 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4.
%H A345816 Sean A. Irvine, <a href="/A345816/b345816.txt">Table of n, a(n) for n = 1..10000</a>
%e A345816 6691 is a term because 6691 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4.
%t A345816 Select[Range[20000],Count[PowersRepresentations[#,6,4],_?(#[[1]]>0&)]==4&] (* _Harvey P. Dale_, Mar 11 2023 *)
%o A345816 (Python)
%o A345816 from itertools import combinations_with_replacement as cwr
%o A345816 from collections import defaultdict
%o A345816 keep = defaultdict(lambda: 0)
%o A345816 power_terms = [x**4 for x in range(1, 1000)]
%o A345816 for pos in cwr(power_terms, 6):
%o A345816     tot = sum(pos)
%o A345816     keep[tot] += 1
%o A345816     rets = sorted([k for k, v in keep.items() if v == 4])
%o A345816     for x in range(len(rets)):
%o A345816         print(rets[x])
%Y A345816 Cf. A344355, A345561, A345766, A345815, A345817, A345826, A346359.
%K A345816 nonn
%O A345816 1,1
%A A345816 _David Consiglio, Jr._, Jun 26 2021