This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345817 #6 Jul 31 2021 21:57:23 %S A345817 15395,16610,18866,19235,19410,20996,21011,21316,21331,21491,21620, %T A345817 23811,25091,29700,29715,29906,29955,30356,30995,31235,31266,31331, %U A345817 31506,32035,33651,33795,33891,35171,35411,35636,35796,35971,37971,38595,38675,39266,39890 %N A345817 Numbers that are the sum of six fourth powers in exactly five ways. %C A345817 Differs from A345562 at term 8 because 21251 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 12^4 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4. %H A345817 Sean A. Irvine, <a href="/A345817/b345817.txt">Table of n, a(n) for n = 1..10000</a> %e A345817 16610 is a term because 16610 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 5^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 10^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4. %o A345817 (Python) %o A345817 from itertools import combinations_with_replacement as cwr %o A345817 from collections import defaultdict %o A345817 keep = defaultdict(lambda: 0) %o A345817 power_terms = [x**4 for x in range(1, 1000)] %o A345817 for pos in cwr(power_terms, 6): %o A345817 tot = sum(pos) %o A345817 keep[tot] += 1 %o A345817 rets = sorted([k for k, v in keep.items() if v == 5]) %o A345817 for x in range(len(rets)): %o A345817 print(rets[x]) %Y A345817 Cf. A344359, A345562, A345767, A345816, A345818, A345827, A346360. %K A345817 nonn %O A345817 1,1 %A A345817 _David Consiglio, Jr._, Jun 26 2021