cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345817 Numbers that are the sum of six fourth powers in exactly five ways.

This page as a plain text file.
%I A345817 #6 Jul 31 2021 21:57:23
%S A345817 15395,16610,18866,19235,19410,20996,21011,21316,21331,21491,21620,
%T A345817 23811,25091,29700,29715,29906,29955,30356,30995,31235,31266,31331,
%U A345817 31506,32035,33651,33795,33891,35171,35411,35636,35796,35971,37971,38595,38675,39266,39890
%N A345817 Numbers that are the sum of six fourth powers in exactly five ways.
%C A345817 Differs from A345562 at term 8 because 21251 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 12^4  = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4  = 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4  = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4  = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4  = 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4  = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4.
%H A345817 Sean A. Irvine, <a href="/A345817/b345817.txt">Table of n, a(n) for n = 1..10000</a>
%e A345817 16610 is a term because 16610 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 5^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 10^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4.
%o A345817 (Python)
%o A345817 from itertools import combinations_with_replacement as cwr
%o A345817 from collections import defaultdict
%o A345817 keep = defaultdict(lambda: 0)
%o A345817 power_terms = [x**4 for x in range(1, 1000)]
%o A345817 for pos in cwr(power_terms, 6):
%o A345817     tot = sum(pos)
%o A345817     keep[tot] += 1
%o A345817     rets = sorted([k for k, v in keep.items() if v == 5])
%o A345817     for x in range(len(rets)):
%o A345817         print(rets[x])
%Y A345817 Cf. A344359, A345562, A345767, A345816, A345818, A345827, A346360.
%K A345817 nonn
%O A345817 1,1
%A A345817 _David Consiglio, Jr._, Jun 26 2021