cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345823 Numbers that are the sum of seven fourth powers in exactly one ways.

This page as a plain text file.
%I A345823 #6 Jul 31 2021 21:36:35
%S A345823 7,22,37,52,67,82,87,97,102,112,117,132,147,162,167,177,182,197,212,
%T A345823 227,242,247,322,327,337,352,387,402,407,417,452,467,482,487,562,567,
%U A345823 577,582,592,627,631,642,646,657,661,662,676,691,692,706,707,711,721,722
%N A345823 Numbers that are the sum of seven fourth powers in exactly one ways.
%C A345823 Differs from A003341 at term 23 because 262 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4.
%H A345823 Sean A. Irvine, <a href="/A345823/b345823.txt">Table of n, a(n) for n = 1..10000</a>
%e A345823 22 is a term because 22 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.
%o A345823 (Python)
%o A345823 from itertools import combinations_with_replacement as cwr
%o A345823 from collections import defaultdict
%o A345823 keep = defaultdict(lambda: 0)
%o A345823 power_terms = [x**4 for x in range(1, 1000)]
%o A345823 for pos in cwr(power_terms, 7):
%o A345823     tot = sum(pos)
%o A345823     keep[tot] += 1
%o A345823     rets = sorted([k for k, v in keep.items() if v == 1])
%o A345823     for x in range(len(rets)):
%o A345823         print(rets[x])
%Y A345823 Cf. A003341, A345773, A345813, A345824, A345833, A346278.
%K A345823 nonn
%O A345823 1,1
%A A345823 _David Consiglio, Jr._, Jun 26 2021