This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345823 #6 Jul 31 2021 21:36:35 %S A345823 7,22,37,52,67,82,87,97,102,112,117,132,147,162,167,177,182,197,212, %T A345823 227,242,247,322,327,337,352,387,402,407,417,452,467,482,487,562,567, %U A345823 577,582,592,627,631,642,646,657,661,662,676,691,692,706,707,711,721,722 %N A345823 Numbers that are the sum of seven fourth powers in exactly one ways. %C A345823 Differs from A003341 at term 23 because 262 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4. %H A345823 Sean A. Irvine, <a href="/A345823/b345823.txt">Table of n, a(n) for n = 1..10000</a> %e A345823 22 is a term because 22 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4. %o A345823 (Python) %o A345823 from itertools import combinations_with_replacement as cwr %o A345823 from collections import defaultdict %o A345823 keep = defaultdict(lambda: 0) %o A345823 power_terms = [x**4 for x in range(1, 1000)] %o A345823 for pos in cwr(power_terms, 7): %o A345823 tot = sum(pos) %o A345823 keep[tot] += 1 %o A345823 rets = sorted([k for k, v in keep.items() if v == 1]) %o A345823 for x in range(len(rets)): %o A345823 print(rets[x]) %Y A345823 Cf. A003341, A345773, A345813, A345824, A345833, A346278. %K A345823 nonn %O A345823 1,1 %A A345823 _David Consiglio, Jr._, Jun 26 2021