This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345824 #6 Jul 31 2021 21:36:39 %S A345824 262,277,292,307,342,357,372,422,437,502,517,532,547,597,612,677,772, %T A345824 787,852,886,901,916,966,981,1027,1046,1141,1156,1221,1362,1377,1396, %U A345824 1442,1510,1525,1557,1572,1587,1590,1617,1637,1652,1717,1765,1812,1827,1892 %N A345824 Numbers that are the sum of seven fourth powers in exactly two ways. %C A345824 Differs from A345568 at term 61. %H A345824 Sean A. Irvine, <a href="/A345824/b345824.txt">Table of n, a(n) for n = 1..10000</a> %e A345824 277 is a term because 277 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4. %o A345824 (Python) %o A345824 from itertools import combinations_with_replacement as cwr %o A345824 from collections import defaultdict %o A345824 keep = defaultdict(lambda: 0) %o A345824 power_terms = [x**4 for x in range(1, 1000)] %o A345824 for pos in cwr(power_terms, 7): %o A345824 tot = sum(pos) %o A345824 keep[tot] += 1 %o A345824 rets = sorted([k for k, v in keep.items() if v == 2]) %o A345824 for x in range(len(rets)): %o A345824 print(rets[x]) %Y A345824 Cf. A345568, A345774, A345814, A345823, A345825, A345834, A346279. %K A345824 nonn %O A345824 1,1 %A A345824 _David Consiglio, Jr._, Jun 26 2021