cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345824 Numbers that are the sum of seven fourth powers in exactly two ways.

This page as a plain text file.
%I A345824 #6 Jul 31 2021 21:36:39
%S A345824 262,277,292,307,342,357,372,422,437,502,517,532,547,597,612,677,772,
%T A345824 787,852,886,901,916,966,981,1027,1046,1141,1156,1221,1362,1377,1396,
%U A345824 1442,1510,1525,1557,1572,1587,1590,1617,1637,1652,1717,1765,1812,1827,1892
%N A345824 Numbers that are the sum of seven fourth powers in exactly two ways.
%C A345824 Differs from A345568 at term 61.
%H A345824 Sean A. Irvine, <a href="/A345824/b345824.txt">Table of n, a(n) for n = 1..10000</a>
%e A345824 277 is a term because 277 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
%o A345824 (Python)
%o A345824 from itertools import combinations_with_replacement as cwr
%o A345824 from collections import defaultdict
%o A345824 keep = defaultdict(lambda: 0)
%o A345824 power_terms = [x**4 for x in range(1, 1000)]
%o A345824 for pos in cwr(power_terms, 7):
%o A345824     tot = sum(pos)
%o A345824     keep[tot] += 1
%o A345824     rets = sorted([k for k, v in keep.items() if v == 2])
%o A345824     for x in range(len(rets)):
%o A345824         print(rets[x])
%Y A345824 Cf. A345568, A345774, A345814, A345823, A345825, A345834, A346279.
%K A345824 nonn
%O A345824 1,1
%A A345824 _David Consiglio, Jr._, Jun 26 2021