cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345825 Numbers that are the sum of seven fourth powers in exactly three ways.

This page as a plain text file.
%I A345825 #6 Jul 31 2021 21:36:43
%S A345825 2677,2692,2757,2852,2867,2917,2997,3107,3172,3301,3476,3541,3972,
%T A345825 4132,4227,4242,4257,4307,4322,4372,4437,4452,4482,4497,4562,4627,
%U A345825 4737,4756,4851,4866,4867,4931,4996,5077,5106,5107,5122,5187,5252,5282,5317,5347,5362
%N A345825 Numbers that are the sum of seven fourth powers in exactly three ways.
%C A345825 Differs from A345569 at term 7 because 2932 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 7^4  = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 6^4 + 6^4  = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4  = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
%H A345825 Sean A. Irvine, <a href="/A345825/b345825.txt">Table of n, a(n) for n = 1..10000</a>
%e A345825 2692 is a term because 2692 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
%o A345825 (Python)
%o A345825 from itertools import combinations_with_replacement as cwr
%o A345825 from collections import defaultdict
%o A345825 keep = defaultdict(lambda: 0)
%o A345825 power_terms = [x**4 for x in range(1, 1000)]
%o A345825 for pos in cwr(power_terms, 7):
%o A345825     tot = sum(pos)
%o A345825     keep[tot] += 1
%o A345825     rets = sorted([k for k, v in keep.items() if v == 3])
%o A345825     for x in range(len(rets)):
%o A345825         print(rets[x])
%Y A345825 Cf. A345569, A345775, A345815, A345824, A345826, A345835, A346280.
%K A345825 nonn
%O A345825 1,1
%A A345825 _David Consiglio, Jr._, Jun 26 2021