cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345826 Numbers that are the sum of seven fourth powers in exactly four ways.

This page as a plain text file.
%I A345826 #6 Jul 31 2021 21:36:46
%S A345826 2932,4147,4212,4387,5427,5602,5667,6627,6692,6817,6822,6837,6852,
%T A345826 6867,7012,7122,7251,7316,7491,7747,7857,8052,8097,8162,8402,8467,
%U A345826 8532,8707,8787,9027,9092,9157,9172,9202,9237,9252,9332,9412,9442,9492,9572,9652,9682
%N A345826 Numbers that are the sum of seven fourth powers in exactly four ways.
%C A345826 Differs from A345570 at term 9 because 6642 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 9^4  = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4  = 2^4 + 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4  = 2^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4  = 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.
%H A345826 Sean A. Irvine, <a href="/A345826/b345826.txt">Table of n, a(n) for n = 1..10000</a>
%e A345826 4147 is a term because 4147 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4.
%o A345826 (Python)
%o A345826 from itertools import combinations_with_replacement as cwr
%o A345826 from collections import defaultdict
%o A345826 keep = defaultdict(lambda: 0)
%o A345826 power_terms = [x**4 for x in range(1, 1000)]
%o A345826 for pos in cwr(power_terms, 7):
%o A345826     tot = sum(pos)
%o A345826     keep[tot] += 1
%o A345826     rets = sorted([k for k, v in keep.items() if v == 4])
%o A345826     for x in range(len(rets)):
%o A345826         print(rets[x])
%Y A345826 Cf. A345570, A345776, A345816, A345825, A345827, A345836, A346281.
%K A345826 nonn
%O A345826 1,1
%A A345826 _David Consiglio, Jr._, Jun 26 2021