cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345827 Numbers that are the sum of seven fourth powers in exactly five ways.

This page as a plain text file.
%I A345827 #6 Jul 31 2021 21:36:50
%S A345827 6642,6707,6772,6882,6947,7922,7987,8227,8962,9267,9507,9747,10116,
%T A345827 10291,10722,10867,10932,10962,11331,11411,11571,12676,12851,12916,
%U A345827 13187,13252,13891,13956,14131,14211,14707,14772,14802,14917,14932,14947,15012,15092,15316
%N A345827 Numbers that are the sum of seven fourth powers in exactly five ways.
%C A345827 Differs from A345571 at term 16 because 10787 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 8^4  = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 8^4 + 9^4  = 1^4 + 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 9^4  = 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 9^4  = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 + 8^4  = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 8^4.
%H A345827 Sean A. Irvine, <a href="/A345827/b345827.txt">Table of n, a(n) for n = 1..10000</a>
%e A345827 6707 is a term because 6707 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
%o A345827 (Python)
%o A345827 from itertools import combinations_with_replacement as cwr
%o A345827 from collections import defaultdict
%o A345827 keep = defaultdict(lambda: 0)
%o A345827 power_terms = [x**4 for x in range(1, 1000)]
%o A345827 for pos in cwr(power_terms, 7):
%o A345827     tot = sum(pos)
%o A345827     keep[tot] += 1
%o A345827     rets = sorted([k for k, v in keep.items() if v == 5])
%o A345827     for x in range(len(rets)):
%o A345827         print(rets[x])
%Y A345827 Cf. A345571, A345777, A345817, A345826, A345828, A345837, A346282.
%K A345827 nonn
%O A345827 1,1
%A A345827 _David Consiglio, Jr._, Jun 26 2021