cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345831 Numbers that are the sum of seven fourth powers in exactly nine ways.

This page as a plain text file.
%I A345831 #6 Jul 31 2021 21:37:04
%S A345831 19491,21267,21332,23652,35427,36052,37812,38067,39891,40356,41732,
%T A345831 41747,43267,43876,43891,43956,44131,44196,44532,44612,45156,45171,
%U A345831 45411,45651,45652,45891,46276,46451,46516,47427,48036,48052,48532,48707,49747,49956,49987
%N A345831 Numbers that are the sum of seven fourth powers in exactly nine ways.
%C A345831 Differs from A345575 at term 5 because 31251 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 10^4 + 12^4  = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 10^4 + 11^4  = 1^4 + 4^4 + 4^4 + 4^4 + 5^4 + 6^4 + 13^4  = 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 + 10^4  = 2^4 + 2^4 + 2^4 + 5^4 + 6^4 + 11^4 + 11^4  = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 10^4 + 11^4  = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 10^4 + 12^4  = 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 + 10^4  = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 + 11^4  = 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4 + 11^4.
%H A345831 Sean A. Irvine, <a href="/A345831/b345831.txt">Table of n, a(n) for n = 1..10000</a>
%e A345831 21267 is a term because 21267 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 12^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 2^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 2^4 + 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 11^4 = 3^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 + 8^4.
%o A345831 (Python)
%o A345831 from itertools import combinations_with_replacement as cwr
%o A345831 from collections import defaultdict
%o A345831 keep = defaultdict(lambda: 0)
%o A345831 power_terms = [x**4 for x in range(1, 1000)]
%o A345831 for pos in cwr(power_terms, 7):
%o A345831     tot = sum(pos)
%o A345831     keep[tot] += 1
%o A345831     rets = sorted([k for k, v in keep.items() if v == 9])
%o A345831     for x in range(len(rets)):
%o A345831         print(rets[x])
%Y A345831 Cf. A345575, A345781, A345821, A345830, A345832, A345841, A346286.
%K A345831 nonn
%O A345831 1,1
%A A345831 _David Consiglio, Jr._, Jun 26 2021