cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345832 Numbers that are the sum of seven fourth powers in exactly ten ways.

This page as a plain text file.
%I A345832 #6 Jul 31 2021 21:39:39
%S A345832 31251,44547,45827,45892,47667,47971,49572,51092,53316,53476,54531,
%T A345832 54596,54756,57411,58276,58660,59781,59811,59827,59861,59876,59892,
%U A345832 61076,64581,65876,65891,66356,66596,66676,67716,67876,68131,68322,68772,69171,69667,70116
%N A345832 Numbers that are the sum of seven fourth powers in exactly ten ways.
%C A345832 Differs from A345576 at term 5 because 45907 = 1^4 + 1^4 + 3^4 + 4^4 + 8^4 + 12^4 + 12^4  = 1^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 + 13^4  = 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 11^4 + 13^4  = 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 11^4 + 13^4  = 2^4 + 2^4 + 4^4 + 7^4 + 7^4 + 7^4 + 14^4  = 2^4 + 3^4 + 6^4 + 6^4 + 7^4 + 7^4 + 14^4  = 2^4 + 4^4 + 6^4 + 7^4 + 9^4 + 11^4 + 12^4  = 2^4 + 5^4 + 5^4 + 10^4 + 10^4 + 10^4 + 11^4  = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 9^4 + 14^4  = 3^4 + 6^4 + 6^4 + 6^4 + 9^4 + 11^4 + 12^4  = 4^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4.
%H A345832 Sean A. Irvine, <a href="/A345832/b345832.txt">Table of n, a(n) for n = 1..10000</a>
%e A345832 44547 is a term because 44547 = 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 11^4 + 13^4 = 1^4 + 2^4 + 2^4 + 6^4 + 7^4 + 7^4 + 14^4 = 1^4 + 2^4 + 6^4 + 6^4 + 9^4 + 11^4 + 12^4 = 1^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4 = 2^4 + 2^4 + 8^4 + 9^4 + 9^4 + 9^4 + 12^4 = 2^4 + 4^4 + 6^4 + 6^4 + 9^4 + 9^4 + 13^4 = 2^4 + 4^4 + 7^4 + 7^4 + 8^4 + 11^4 + 12^4 = 3^4 + 3^4 + 4^4 + 4^4 + 7^4 + 12^4 + 12^4 = 3^4 + 6^4 + 6^4 + 7^4 + 8^4 + 11^4 + 12^4 = 4^4 + 4^4 + 8^4 + 8^4 + 9^4 + 11^4 + 11^4.
%o A345832 (Python)
%o A345832 from itertools import combinations_with_replacement as cwr
%o A345832 from collections import defaultdict
%o A345832 keep = defaultdict(lambda: 0)
%o A345832 power_terms = [x**4 for x in range(1, 1000)]
%o A345832 for pos in cwr(power_terms, 7):
%o A345832     tot = sum(pos)
%o A345832     keep[tot] += 1
%o A345832     rets = sorted([k for k, v in keep.items() if v == 10])
%o A345832     for x in range(len(rets)):
%o A345832         print(rets[x])
%Y A345832 Cf. A345576, A345782, A345822, A345831, A345842, A346259.
%K A345832 nonn
%O A345832 1,1
%A A345832 _David Consiglio, Jr._, Jun 26 2021