This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345833 #6 Jul 31 2021 21:33:24 %S A345833 8,23,38,53,68,83,88,98,103,113,118,128,133,148,163,168,178,183,193, %T A345833 198,213,228,243,248,258,328,338,353,368,403,408,418,433,468,483,488, %U A345833 498,568,578,593,608,632,643,647,648,658,662,663,673,677,692,707,708,712 %N A345833 Numbers that are the sum of eight fourth powers in exactly one ways. %C A345833 Differs from A003342 at term 26 because 263 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4. %H A345833 Sean A. Irvine, <a href="/A345833/b345833.txt">Table of n, a(n) for n = 1..10000</a> %e A345833 23 is a term because 23 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4. %o A345833 (Python) %o A345833 from itertools import combinations_with_replacement as cwr %o A345833 from collections import defaultdict %o A345833 keep = defaultdict(lambda: 0) %o A345833 power_terms = [x**4 for x in range(1, 1000)] %o A345833 for pos in cwr(power_terms, 8): %o A345833 tot = sum(pos) %o A345833 keep[tot] += 1 %o A345833 rets = sorted([k for k, v in keep.items() if v == 1]) %o A345833 for x in range(len(rets)): %o A345833 print(rets[x]) %Y A345833 Cf. A003342, A345783, A345823, A345834, A345843, A346326. %K A345833 nonn %O A345833 1,1 %A A345833 _David Consiglio, Jr._, Jun 26 2021