This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345834 #6 Jul 31 2021 21:33:27 %S A345834 263,278,293,308,323,343,358,373,388,423,438,453,503,533,548,563,583, %T A345834 598,613,628,678,693,758,773,788,803,853,868,887,902,917,932,933,967, %U A345834 982,997,1028,1043,1047,1062,1108,1127,1142,1157,1172,1222,1237,1283,1302 %N A345834 Numbers that are the sum of eight fourth powers in exactly two ways. %C A345834 Differs from A345577 at term 14 because 518 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4. %H A345834 Sean A. Irvine, <a href="/A345834/b345834.txt">Table of n, a(n) for n = 1..10000</a> %e A345834 278 is a term because 278 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4. %o A345834 (Python) %o A345834 from itertools import combinations_with_replacement as cwr %o A345834 from collections import defaultdict %o A345834 keep = defaultdict(lambda: 0) %o A345834 power_terms = [x**4 for x in range(1, 1000)] %o A345834 for pos in cwr(power_terms, 8): %o A345834 tot = sum(pos) %o A345834 keep[tot] += 1 %o A345834 rets = sorted([k for k, v in keep.items() if v == 2]) %o A345834 for x in range(len(rets)): %o A345834 print(rets[x]) %Y A345834 Cf. A345577, A345784, A345824, A345833, A345835, A345844, A346327. %K A345834 nonn %O A345834 1,1 %A A345834 _David Consiglio, Jr._, Jun 26 2021