cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345834 Numbers that are the sum of eight fourth powers in exactly two ways.

This page as a plain text file.
%I A345834 #6 Jul 31 2021 21:33:27
%S A345834 263,278,293,308,323,343,358,373,388,423,438,453,503,533,548,563,583,
%T A345834 598,613,628,678,693,758,773,788,803,853,868,887,902,917,932,933,967,
%U A345834 982,997,1028,1043,1047,1062,1108,1127,1142,1157,1172,1222,1237,1283,1302
%N A345834 Numbers that are the sum of eight fourth powers in exactly two ways.
%C A345834 Differs from A345577 at term 14 because 518 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4  = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4  = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.
%H A345834 Sean A. Irvine, <a href="/A345834/b345834.txt">Table of n, a(n) for n = 1..10000</a>
%e A345834 278 is a term because 278 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
%o A345834 (Python)
%o A345834 from itertools import combinations_with_replacement as cwr
%o A345834 from collections import defaultdict
%o A345834 keep = defaultdict(lambda: 0)
%o A345834 power_terms = [x**4 for x in range(1, 1000)]
%o A345834 for pos in cwr(power_terms, 8):
%o A345834     tot = sum(pos)
%o A345834     keep[tot] += 1
%o A345834     rets = sorted([k for k, v in keep.items() if v == 2])
%o A345834     for x in range(len(rets)):
%o A345834         print(rets[x])
%Y A345834 Cf. A345577, A345784, A345824, A345833, A345835, A345844, A346327.
%K A345834 nonn
%O A345834 1,1
%A A345834 _David Consiglio, Jr._, Jun 26 2021