cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345835 Numbers that are the sum of eight fourth powers in exactly three ways.

This page as a plain text file.
%I A345835 #6 Jul 31 2021 21:33:31
%S A345835 518,2678,2693,2708,2738,2758,2773,2838,2853,2868,2883,2918,2998,3078,
%T A345835 3108,3123,3253,3302,3317,3363,3382,3428,3477,3492,3542,3622,3732,
%U A345835 3778,3797,3893,3926,3953,3973,3988,4018,4053,4101,4118,4133,4166,4193,4243,4258
%N A345835 Numbers that are the sum of eight fourth powers in exactly three ways.
%C A345835 Differs from A345578 at term 13 because 2933 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 7^4  = 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 6^4 + 6^4  = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4  = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
%H A345835 Sean A. Irvine, <a href="/A345835/b345835.txt">Table of n, a(n) for n = 1..10000</a>
%e A345835 2678 is a term because 2678 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
%o A345835 (Python)
%o A345835 from itertools import combinations_with_replacement as cwr
%o A345835 from collections import defaultdict
%o A345835 keep = defaultdict(lambda: 0)
%o A345835 power_terms = [x**4 for x in range(1, 1000)]
%o A345835 for pos in cwr(power_terms, 8):
%o A345835     tot = sum(pos)
%o A345835     keep[tot] += 1
%o A345835     rets = sorted([k for k, v in keep.items() if v == 3])
%o A345835     for x in range(len(rets)):
%o A345835         print(rets[x])
%Y A345835 Cf. A345578, A345785, A345825, A345834, A345836, A345845, A346328.
%K A345835 nonn
%O A345835 1,1
%A A345835 _David Consiglio, Jr._, Jun 26 2021