cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345836 Numbers that are the sum of eight fourth powers in exactly four ways.

This page as a plain text file.
%I A345836 #6 Jul 31 2021 21:33:34
%S A345836 2933,2948,3013,3173,3188,3557,4148,4163,4213,4293,4388,4453,4643,
%T A345836 4772,4837,4883,5012,5123,5188,5203,5268,5333,5363,5378,5398,5428,
%U A345836 5538,5573,5603,5618,5668,5733,5748,5858,5923,6052,6163,6227,6292,6548,6578,6628,6693
%N A345836 Numbers that are the sum of eight fourth powers in exactly four ways.
%C A345836 Differs from A345579 at term 10 because 4228 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 8^4  = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 6^4 + 7^4  = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4  = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4  = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4.
%H A345836 Sean A. Irvine, <a href="/A345836/b345836.txt">Table of n, a(n) for n = 1..10000</a>
%e A345836 2948 is a term because 2948 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
%o A345836 (Python)
%o A345836 from itertools import combinations_with_replacement as cwr
%o A345836 from collections import defaultdict
%o A345836 keep = defaultdict(lambda: 0)
%o A345836 power_terms = [x**4 for x in range(1, 1000)]
%o A345836 for pos in cwr(power_terms, 8):
%o A345836     tot = sum(pos)
%o A345836     keep[tot] += 1
%o A345836     rets = sorted([k for k, v in keep.items() if v == 4])
%o A345836     for x in range(len(rets)):
%o A345836         print(rets[x])
%Y A345836 Cf. A345579, A345786, A345826, A345835, A345837, A345846, A346329.
%K A345836 nonn
%O A345836 1,1
%A A345836 _David Consiglio, Jr._, Jun 26 2021