This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345836 #6 Jul 31 2021 21:33:34 %S A345836 2933,2948,3013,3173,3188,3557,4148,4163,4213,4293,4388,4453,4643, %T A345836 4772,4837,4883,5012,5123,5188,5203,5268,5333,5363,5378,5398,5428, %U A345836 5538,5573,5603,5618,5668,5733,5748,5858,5923,6052,6163,6227,6292,6548,6578,6628,6693 %N A345836 Numbers that are the sum of eight fourth powers in exactly four ways. %C A345836 Differs from A345579 at term 10 because 4228 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 6^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4. %H A345836 Sean A. Irvine, <a href="/A345836/b345836.txt">Table of n, a(n) for n = 1..10000</a> %e A345836 2948 is a term because 2948 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4. %o A345836 (Python) %o A345836 from itertools import combinations_with_replacement as cwr %o A345836 from collections import defaultdict %o A345836 keep = defaultdict(lambda: 0) %o A345836 power_terms = [x**4 for x in range(1, 1000)] %o A345836 for pos in cwr(power_terms, 8): %o A345836 tot = sum(pos) %o A345836 keep[tot] += 1 %o A345836 rets = sorted([k for k, v in keep.items() if v == 4]) %o A345836 for x in range(len(rets)): %o A345836 print(rets[x]) %Y A345836 Cf. A345579, A345786, A345826, A345835, A345837, A345846, A346329. %K A345836 nonn %O A345836 1,1 %A A345836 _David Consiglio, Jr._, Jun 26 2021