cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345840 Numbers that are the sum of eight fourth powers in exactly eight ways.

This page as a plain text file.
%I A345840 #6 Jul 31 2021 21:33:48
%S A345840 13268,14212,14788,15667,16612,16627,16707,16772,16822,16852,16882,
%T A345840 16947,17363,17428,17877,18117,18948,19157,19237,19252,19682,19828,
%U A345840 20291,20372,20612,20707,20722,20772,20917,20962,21253,21331,21458,21478,21573,21717,21763
%N A345840 Numbers that are the sum of eight fourth powers in exactly eight ways.
%C A345840 Differs from A345583 at term 4 because 15427 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 6^4 + 8^4 + 10^4  = 1^4 + 2^4 + 2^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4  = 1^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4  = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4  = 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4  = 2^4 + 2^4 + 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4  = 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 7^4 + 10^4  = 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 10^4  = 4^4 + 4^4 + 5^4 + 6^4 + 7^4 + 7^4 + 8^4 + 8^4.
%H A345840 Sean A. Irvine, <a href="/A345840/b345840.txt">Table of n, a(n) for n = 1..10000</a>
%e A345840 14212 is a term because 14212 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 8^4 + 10^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 7^4 + 10^4 = 1^4 + 1^4 + 1^4 + 5^4 + 6^4 + 8^4 + 8^4 + 8^4 = 1^4 + 2^4 + 4^4 + 4^4 + 5^4 + 7^4 + 8^4 + 9^4 = 1^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 8^4 + 9^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 10^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 10^4 = 3^4 + 4^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4.
%o A345840 (Python)
%o A345840 from itertools import combinations_with_replacement as cwr
%o A345840 from collections import defaultdict
%o A345840 keep = defaultdict(lambda: 0)
%o A345840 power_terms = [x**4 for x in range(1, 1000)]
%o A345840 for pos in cwr(power_terms, 8):
%o A345840     tot = sum(pos)
%o A345840     keep[tot] += 1
%o A345840     rets = sorted([k for k, v in keep.items() if v == 8])
%o A345840     for x in range(len(rets)):
%o A345840         print(rets[x])
%Y A345840 Cf. A345583, A345790, A345830, A345839, A345841, A345850, A346333.
%K A345840 nonn
%O A345840 1,1
%A A345840 _David Consiglio, Jr._, Jun 26 2021