cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345841 Numbers that are the sum of eight fourth powers in exactly nine ways.

This page as a plain text file.
%I A345841 #6 Jul 31 2021 21:33:51
%S A345841 15427,16692,17348,17493,18052,18227,19267,19412,19572,19748,20852,
%T A345841 21443,21493,21637,21652,21653,21827,21877,21972,22037,22212,22388,
%U A345841 22501,22548,22868,22932,23107,23412,23413,23428,23828,23893,23972,24037,24131,24212,24517
%N A345841 Numbers that are the sum of eight fourth powers in exactly nine ways.
%C A345841 Differs from A345584 at term 5 because 17972 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 9^4 + 10^4  = 1^4 + 1^4 + 5^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4  = 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 5^4 + 7^4 + 11^4  = 1^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 6^4 + 11^4  = 1^4 + 2^4 + 3^4 + 3^4 + 6^4 + 7^4 + 8^4 + 10^4  = 1^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 + 10^4  = 1^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4  = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 8^4 + 9^4 + 9^4  = 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 7^4 + 9^4 + 9^4  = 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 9^4 + 9^4.
%H A345841 Sean A. Irvine, <a href="/A345841/b345841.txt">Table of n, a(n) for n = 1..10000</a>
%e A345841 16692 is a term because 16692 = 1^4 + 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 10^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 + 10^4 = 1^4 + 1^4 + 2^4 + 5^4 + 6^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 11^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 + 10^4 = 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 1^4 + 3^4 + 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 5^4 + 7^4 + 9^4 + 9^4 = 2^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 9^4 + 9^4.
%o A345841 (Python)
%o A345841 from itertools import combinations_with_replacement as cwr
%o A345841 from collections import defaultdict
%o A345841 keep = defaultdict(lambda: 0)
%o A345841 power_terms = [x**4 for x in range(1, 1000)]
%o A345841 for pos in cwr(power_terms, 8):
%o A345841     tot = sum(pos)
%o A345841     keep[tot] += 1
%o A345841     rets = sorted([k for k, v in keep.items() if v == 9])
%o A345841     for x in range(len(rets)):
%o A345841         print(rets[x])
%Y A345841 Cf. A345584, A345791, A345831, A345840, A345842, A345851, A346334.
%K A345841 nonn
%O A345841 1,1
%A A345841 _David Consiglio, Jr._, Jun 26 2021