cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345842 Numbers that are the sum of eight fourth powers in exactly ten ways.

This page as a plain text file.
%I A345842 #6 Jul 31 2021 21:33:55
%S A345842 17972,17987,19492,19507,19747,20116,21283,21333,21413,21508,21588,
%T A345842 22067,22563,23237,23252,23587,23588,23603,23653,24277,24452,24802,
%U A345842 24948,25603,26228,27347,27683,27813,27893,27973,28532,28852,28853,28933,29108,29173,29491
%N A345842 Numbers that are the sum of eight fourth powers in exactly ten ways.
%C A345842 Differs from A345585 at term 7 because 20787 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 8^4 + 10^4  = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 8^4 + 9^4 + 10^4  = 1^4 + 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 9^4 + 10^4  = 1^4 + 2^4 + 5^4 + 6^4 + 8^4 + 8^4 + 8^4 + 9^4  = 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 9^4 + 10^4  = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 8^4 + 11^4  = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 + 8^4 + 10^4  = 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 11^4  = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 8^4 + 10^4  = 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 6^4 + 11^4  = 3^4 + 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4 + 8^4.
%H A345842 Sean A. Irvine, <a href="/A345842/b345842.txt">Table of n, a(n) for n = 1..10000</a>
%e A345842 17987 is a term because 17987 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 9^4 + 10^4 = 1^4 + 2^4 + 5^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 5^4 + 7^4 + 11^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 7^4 + 8^4 + 10^4 = 2^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 + 10^4 = 2^4 + 4^4 + 5^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 + 10^4 = 3^4 + 5^4 + 6^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4.
%o A345842 (Python)
%o A345842 from itertools import combinations_with_replacement as cwr
%o A345842 from collections import defaultdict
%o A345842 keep = defaultdict(lambda: 0)
%o A345842 power_terms = [x**4 for x in range(1, 1000)]
%o A345842 for pos in cwr(power_terms, 8):
%o A345842     tot = sum(pos)
%o A345842     keep[tot] += 1
%o A345842     rets = sorted([k for k, v in keep.items() if v == 10])
%o A345842     for x in range(len(rets)):
%o A345842         print(rets[x])
%Y A345842 Cf. A345585, A345792, A345832, A345841, A345852, A346335.
%K A345842 nonn
%O A345842 1,1
%A A345842 _David Consiglio, Jr._, Jun 26 2021