This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345844 #6 Jul 31 2021 21:28:16 %S A345844 264,279,294,309,324,339,344,359,374,389,404,424,439,454,469,504,549, %T A345844 564,579,584,614,629,644,664,679,694,709,759,789,804,819,839,854,869, %U A345844 884,888,903,918,933,934,948,949,968,983,998,1013,1014,1029,1044,1048,1059 %N A345844 Numbers that are the sum of nine fourth powers in exactly two ways. %C A345844 Differs from A345586 at term 17 because 519 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4. %H A345844 Sean A. Irvine, <a href="/A345844/b345844.txt">Table of n, a(n) for n = 1..10000</a> %e A345844 279 is a term because 279 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4. %o A345844 (Python) %o A345844 from itertools import combinations_with_replacement as cwr %o A345844 from collections import defaultdict %o A345844 keep = defaultdict(lambda: 0) %o A345844 power_terms = [x**4 for x in range(1, 1000)] %o A345844 for pos in cwr(power_terms, 9): %o A345844 tot = sum(pos) %o A345844 keep[tot] += 1 %o A345844 rets = sorted([k for k, v in keep.items() if v == 2]) %o A345844 for x in range(len(rets)): %o A345844 print(rets[x]) %Y A345844 Cf. A345586, A345794, A345834, A345843, A345845, A345854, A346337. %K A345844 nonn %O A345844 1,1 %A A345844 _David Consiglio, Jr._, Jun 26 2021