cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345845 Numbers that are the sum of nine fourth powers in exactly three ways.

This page as a plain text file.
%I A345845 #6 Jul 31 2021 21:28:19
%S A345845 519,534,599,774,1143,1364,1539,1604,1619,1814,2579,2644,2659,2679,
%T A345845 2694,2709,2724,2739,2754,2759,2774,2789,2819,2834,2839,2869,2884,
%U A345845 2899,2994,2999,3079,3109,3124,3139,3303,3318,3333,3334,3363,3364,3379,3383,3398,3463
%N A345845 Numbers that are the sum of nine fourth powers in exactly three ways.
%C A345845 Differs from A345587 at term 26 because 285.
%H A345845 Sean A. Irvine, <a href="/A345845/b345845.txt">Table of n, a(n) for n = 1..10000</a>
%e A345845 534 is a term because 534 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.
%o A345845 (Python)
%o A345845 from itertools import combinations_with_replacement as cwr
%o A345845 from collections import defaultdict
%o A345845 keep = defaultdict(lambda: 0)
%o A345845 power_terms = [x**4 for x in range(1, 1000)]
%o A345845 for pos in cwr(power_terms, 9):
%o A345845     tot = sum(pos)
%o A345845     keep[tot] += 1
%o A345845     rets = sorted([k for k, v in keep.items() if v == 3])
%o A345845     for x in range(len(rets)):
%o A345845         print(rets[x])
%Y A345845 Cf. A345587, A345795, A345835, A345844, A345846, A345855, A346338.
%K A345845 nonn
%O A345845 1,1
%A A345845 _David Consiglio, Jr._, Jun 26 2021