This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345845 #6 Jul 31 2021 21:28:19 %S A345845 519,534,599,774,1143,1364,1539,1604,1619,1814,2579,2644,2659,2679, %T A345845 2694,2709,2724,2739,2754,2759,2774,2789,2819,2834,2839,2869,2884, %U A345845 2899,2994,2999,3079,3109,3124,3139,3303,3318,3333,3334,3363,3364,3379,3383,3398,3463 %N A345845 Numbers that are the sum of nine fourth powers in exactly three ways. %C A345845 Differs from A345587 at term 26 because 285. %H A345845 Sean A. Irvine, <a href="/A345845/b345845.txt">Table of n, a(n) for n = 1..10000</a> %e A345845 534 is a term because 534 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4. %o A345845 (Python) %o A345845 from itertools import combinations_with_replacement as cwr %o A345845 from collections import defaultdict %o A345845 keep = defaultdict(lambda: 0) %o A345845 power_terms = [x**4 for x in range(1, 1000)] %o A345845 for pos in cwr(power_terms, 9): %o A345845 tot = sum(pos) %o A345845 keep[tot] += 1 %o A345845 rets = sorted([k for k, v in keep.items() if v == 3]) %o A345845 for x in range(len(rets)): %o A345845 print(rets[x]) %Y A345845 Cf. A345587, A345795, A345835, A345844, A345846, A345855, A346338. %K A345845 nonn %O A345845 1,1 %A A345845 _David Consiglio, Jr._, Jun 26 2021