This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345846 #6 Jul 31 2021 21:28:22 %S A345846 2854,2919,2934,2949,2964,3014,3029,3094,3159,3174,3204,3254,3269, %T A345846 3429,3444,3558,3573,3638,3798,3813,3974,4034,4134,4164,4179,4182, %U A345846 4209,4214,4274,4294,4389,4439,4454,4534,4614,4644,4709,4773,4788,4838,4884,4918,4949 %N A345846 Numbers that are the sum of nine fourth powers in exactly four ways. %C A345846 Differs from A345588 at term 11 because 3189 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 7^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 2^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4. %H A345846 Sean A. Irvine, <a href="/A345846/b345846.txt">Table of n, a(n) for n = 1..10000</a> %e A345846 2919 is a term because 2919 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4. %o A345846 (Python) %o A345846 from itertools import combinations_with_replacement as cwr %o A345846 from collections import defaultdict %o A345846 keep = defaultdict(lambda: 0) %o A345846 power_terms = [x**4 for x in range(1, 1000)] %o A345846 for pos in cwr(power_terms, 9): %o A345846 tot = sum(pos) %o A345846 keep[tot] += 1 %o A345846 rets = sorted([k for k, v in keep.items() if v == 4]) %o A345846 for x in range(len(rets)): %o A345846 print(rets[x]) %Y A345846 Cf. A345588, A345796, A345836, A345845, A345847, A345856, A346339. %K A345846 nonn %O A345846 1,1 %A A345846 _David Consiglio, Jr._, Jun 26 2021